{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

laplace-table

# laplace-table - 2 s-jω 1 2 s jω sin ωt ω s 2 ω 2 = 1 2...

This preview shows pages 1–2. Sign up to view the full content.

S. Boyd EE102 Table of Laplace Transforms Remember that we consider all functions (signals) as defined only on t 0. General f ( t ) F ( s ) = Z 0 f ( t ) e - st dt f + g F + G αf ( α R ) αF df dt sF ( s ) - f (0) d k f dt k s k F ( s ) - s k - 1 f (0) - s k - 2 df dt (0) - · · · - d k - 1 f dt k - 1 (0) g ( t ) = Z t 0 f ( τ ) G ( s ) = F ( s ) s f ( αt ), α > 0 1 α F ( s/α ) e at f ( t ) F ( s - a ) tf ( t ) - dF ds t k f ( t ) ( - 1) k d k F ( s ) ds k f ( t ) t Z s F ( s ) ds g ( t ) = ( 0 0 t < T f ( t - T ) t T , T 0 G ( s ) = e - sT F ( s ) 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Specific 1 1 s δ 1 δ ( k ) s k t 1 s 2 t k k ! , k 0 1 s k +1 e at 1 s - a cos
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 s-jω + 1 / 2 s + jω sin ωt ω s 2 + ω 2 = 1 / 2 j s-jω-1 / 2 j s + jω cos( ωt + φ ) s cos φ-ω sin φ s 2 + ω 2 e-at cos ωt s + a ( s + a ) 2 + ω 2 e-at sin ωt ω ( s + a ) 2 + ω 2 2...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

laplace-table - 2 s-jω 1 2 s jω sin ωt ω s 2 ω 2 = 1 2...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online