# PHYS102Lec1 - " \$& \$ \$ \$&" \$ \$ 0 \$ 0 1 2 1 2...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ! " \$ &% # # # % # # # % # \$ # \$ \$ ' ( )# % # * &% # * # % # # ' ( # % # % # % # # + # % ," , ( . / . # % # \$ . \$ # # 0 # # . /. # \$ # # # 0 1 2 1 2 # . \$ \$ ! . . .0 3 4 4 567 8 92 : 567 8 92 . . 4 ; : 5 67 8 4 9 . 1 ! \$ 4 , .0 3 #) , <9= > 0 \$ # 0 & # 4 2 : =9? , .0 . . @ 67 8 @ A8 67 0 0 . . . B # 4 .# > , 0 + 0 4 862 862 # 6 62 ? . # 0 . 0 = − 67 8 9 < = + 86 9 9 = ( − 86 ) < < ∆=∆ 9 0 # ; 9 9 TF = TC + 32 = ( −273.15 ) + 32 = − 460°F 5 5 5 5 TC = ( TF − 32 ) = ( 98.6 − 32 ) = 37.0°C 9 9 9 9 9 TF = TC + 32 = ( T − 273.15) + 32 = ( −173.15) + 32 = − 280°F 5 5 5 0 # TF = 9 5 ; < 9 5 TC + 32 = ( 43 ) + 32 = ( 77 + 32 ) °F = 109°F The normal body temperature is 98.6°F Thus, this patient has a high fever and needs immediate attention . / \$ \$ . # # % .# . \$ # % ( > ∆ =α α \$ 0 . / \$ ∆ − =α ( − ) # . , ( # / \$ 8 ; We choose the radius as our linear ∆ L = α L0 ( ∆ T ) dimension. Then, from ∆ T = TC − 20.0°C = L − L0 2 .21 cm − 2 .20 cm = = 35.0°C −1 α L0 130 × 10 −6 ( °C ) ( 2 .20 cm ) TC = 5 5.0°C / \$ 5* 0 + \$ 0 . \$ / \$ \$ ∆ = γ − =γ ∆ γ = 6α \$ - / \$ \$ ∆V = β Vo ∆t for solids, β = 3α > \$ . . # ( # / \$ = ; (a) The diameter is a linear dimension, so we consider the linear expansion of steel: d = d0 1 + α( ∆T) = ( 2.540 cm) 1 + 11 × 10−6 ( °C) ( −1 ) (100°C − 25°C) = 2.542 cm b) If the volume increases by 1%, then Then, using ∆T = ∆V V0 ∆ V = βV0 ( ∆T ) 1.0 × 10 −2 3 11 × 10 −6 ∆V = (1.0 × 10 −2 ) V0 where β = 3α β = ( °C ) −1 = 3.0 × 102 °C , / \$ \$! 0 3 . . + * . 3 2 =2 \$# \$ "A 8 # . =2 \$ ,\$ 2 = ) ) ! )\$ ) 04 . # ) ! # ) , # # \$ . ) ! . / \$ / " & 1 . #. 1 , )C # . . . \$ mass mass n= molar mass & # 6 # 16 . # CB # B :@ 6 \$ B 68 6 A # . # matom ; molar mass = NA . , # CB # . D \$ # 6 # # 6 B ) -: ! E ( E E : ?8 FA E: ?( 6 ) A ) - ! - : B "* ( . "* ! "* : E AB : B 8?\$ # 168 F A : B AB B # # ! # . # # # . B C 5 ! # 1 " 5 # ) # . . " ! 3N P= 2V 1 mv 2 2 # . # ) . ) ) . " # # . " , ) . " 123 mv = k BT 2 2 " # KE total 3 = nRT 2 ) ) / / 3 U = nRT 2 + ) # .# " # . ) # / = 8 3 U = nRT 2 The average translational kinetic energy per molecule in an ideal gas at absolute temperature T is KE molecule = 3k BT 2 kB = 1.38 × 10−23 J K T = TC + 273.15 = ( 77.0 + 273.15 ) K = 350 K 3 = 1.38 × 10 −23 J K ( 350 K ) = 7.25 × 10 −21 J 2 KE molecule ( ) 0 / \$ GH , # # v rms 3 kB T 3RT = = m M . . . . ( 0 0 ,\$ . \$# . # ; , . ## ,\$ > . . # I .. I . . # ...
View Full Document

## This note was uploaded on 03/07/2011 for the course PHYS 102 taught by Professor Armenn.kocharian during the Winter '11 term at California State University Los Angeles .

Ask a homework question - tutors are online