{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# HW1Solution - AE 321 – Solution to Homework Problems(Fall...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: AE 321 – Solution to Homework Problems (Fall ’08) Chapter 1: Mathematical Preliminaries 1.1 ik jk ij C B A Let’s first work with the dummy index and perform the summation ik k i k i k i C B A B A B A 3 3 2 2 1 1 (1.2) In expression (1.2) we have 2 free indices, therefore it represents 9 equations that are obtained by expanding (1.2) for every combination of i and k : i.e. 1 i & 1 k , 1 i & 2 k , …. The 9 equations are given in the following table. 1 k 2 k 3 k 1 i 11 31 13 21 12 11 11 C B A B A B A 12 32 13 22 12 12 11 C B A B A B A 13 33 13 23 12 13 11 C B A B A B A 2 i 21 31 23 21 22 11 21 C B A B A B A 22 32 23 22 22 12 21 C B A B A B A 23 33 23 23 22 13 21 C B A B A B A 3 i 31 31 33 21 32 11 31 C B A B A B A 32 32 33 22 32 12 31 C B A B A B A 33 33 33 23 32 13 31 C B A B A B A 1.2 k k i i C B A , Once again, let’s start by working with the dummy index, i.e. k , and perform the summation A i B i ,1 C 1 B i ,2 C 2 B i ,3 C 3 B i x 1 C 1 B i x 2 C 2 B i x 3 C 3 (1.3) In this case we only have one free index; therefore expression (1.3) represents 3 equations: i 1 A 1 B 1,1 C 1 B 1, 2 C 2 B 1,3 C 3 B 1 x 1 C 1 B 1 x 2 C 2 B 1 x 3 C 3 i 2 A 2 B 2,1 C 1 B 2,2 C 2 B 2,3 C 3 B 2 x 1 C 1 B 2 x 2 C 2 B 2 x 3 C 3 i 3 A 3 B 3,1 C 1 B 3,2 C 2 B 3, 3 C 3 B 3 x 1 C 1 B 3 x 2 C 2 B 3 x 3 C 3 2.1 Notice that the first expression survives only if...
View Full Document

{[ snackBarMessage ]}

### Page1 / 7

HW1Solution - AE 321 – Solution to Homework Problems(Fall...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online