midterm-solution1

midterm-solution1 - Midterm 1, Course 168—2, Fall 2010...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Midterm 1, Course 168—2, Fall 2010 Name: Student ld#: (Last name) (First name) 1. Please do not turn this page until told to do so. 2. Make sure you have X pages, including the cover page. 3. Other than the. ollieial “cheat sheet"7 no notes, hooks or (‘aloulators are allmved in this exam. [t is a violation of the. UniVersity honor (‘ode to, in any way, assist another person in the completion of the exam. Please. keep your own work eovered up and avoid kioking at the. work of others as much as possible. 1. Please keep your student id card on your desk to facilitate checking of your iden- tification with minimum ineonvenlenee to others. a. Show all work for full eredit. In most eases, a eorreet answer with no supporting work will not reC'oive full H'edit. The best way to got maximum partial erm‘lit is to he write neatly and he organized. (5. lnelude units when appropriate. l. You have Bl) minutes from 532lll— lpm to eomplete the, exam. 8. lfyou need extra spare. you eau use, the liar-k ot' a. page, luit please indieate elearly that you are doing,. so. 1). NOTE: You will lie graded on proper usage otexponentials, logarithms. derivatives and integrals. l. Use tlw pmpvrtivs of cxpnnvnts to himplil‘y rln‘ expression to rlw form a” wlu‘n‘ u is a positivu intvgvr 21ml 1) is an intugm‘ or :1 lmvlinn. (ll) points) r3 -‘3 wig; :5 ":- 5: “ 7123/ / 3/ V 3/2+VL "Ln (! / 2. How much money should he. (hummitwl in an m'mnnt paying 10/“ interest (rom- puunded annually in onlcr to have a, lmlnnw; of $121 at the and of two Wars? (10 points) t A: P<1+£>“ :2) 'P: A H ‘N I; 5%. thvrmiuu all rdntiw vxt'n‘nm Hf the function f(.(:) 2 13¢: For mch «>110, «lvtvr— mine the nature of tlw oxm'mn. (U) puints) 1M” 9 “X164 42m,“ 2 >424) e” = s :3 X: 9 Z 61W qufivc exJFve ma. \X SFNCX) ; Xle'wx ”'2X‘e/~—X "ZXC’X A’Zfipx C- «z’lfiflafl 411(0) : lav-Z >0 :3) O 0\ m'mimum (31:: ‘ 1;"(2); [1(4—9H) :2 A262 <0 2) 2 \Sa maxmum E/ ,1. If y 2111((34'2 + 21'), find (H) points) "L. " Mg €74 +2, 4:4} 0N 3 lxeXL4 2;, 3x 5:7 6%” d}& : 2K€XL4 2. X x eflurzx 5. Using the\ properties of logarithms, V ‘ l . (:1) mudvnsu 3(2 In(.1' +3) +111 .1,'—~hl(.r‘)+ H) mm a, luggzu'ithm of £L sin ‘10 quantify. () F) (:3 points) V3 ; :4 S L wifx N wefo “ME ’ 9’“ / .1; + 1 )Mr‘é, iQMXS X . ————? Kiri “ 2 Mi ~ EE’waxgwfl/viGi—jfl w. iwx~wm<x+o ,_V_‘:_{_# .L , . . . . (h) vxpnnd in > as tho rsnnL ditivrvnvo or Inuitlplo oi lognrltlnns. (5 points ’- f. (5. Find the dorivntivu of y = ingl.(.1;3 + 1). ([0 points) a s W : .—— .Qm m Q “*5 .9” X @x)% 7. Find the indefinite integral / .1: (.1'2 + l) (1.1: in TWO distinvt ways ;ind then verify that both are equivalent. (10 points) 27‘. :3 wth [lifigs (“xz+1)z+g L L Li / Q07 SQ‘g-WMX 3» .fiA—K‘ZZJrC- Li 5/, CC) @i‘li 253: LZ+L+L 4mm WWW Li a 7/ Lt UDVflCk digfirg .gvom diva 513x3va oi; vai Lb) b6 i/q winch i3 aka awmhn‘: 8. Lot j'(.1:) = J: + 3 and 51(1)) 2: .15“) ~rl— 0.1' + 7. ' .f'ld') (a) Evaluate —l—ll.z: (-l paints) w) UL: x‘l—Hw; :7 dx; CW 9 33—, 23(46 2(m3) AL .2 i wwlw r ,3 Wlx'LJré‘x—Hl m V! (1)) Evaluate / lem (-1 points) . my) a Lena m jgsiovl :3 CH3 fifi>oly {Lng C K14 2x a 2 leX—lglArC {$3} 2” y .' ((7) Are tlu‘se two integrals I'vviprm-u‘ls of (nu-h ()thvr? (2 points) (lemvltj/ N30 ‘ ‘ . . . '3 (1.1: U. (u) Evaluate the (l(‘llllll’(’ letvgml / , . l (.I: — 3V (8 points) LL: x—B :3 clxadu‘ k3ka X21, [Hafiz xez/ uv:~l "‘ (1.1: (1)) \Vithnut (‘vnllmting the integral. ('xplnin why £110 definitv imvgml / . 1 -/ “ ' “ cannot. be cvaluatwl. (2 points“) VMULQ 0‘“ \ M18 muck m+ dewt‘mecl OJ: x2; QR Vodth 0¥ 1 njfiz 8 (M m A W w ll). Skvtvh thv arm vnulosml by MW rvg'ions y :— 2—.1:, .1: 2 0 am] y = 0 ('h‘zll‘ly 111:1,1'ki11g the curves and the positions of the 30111913 and find that men. ([0 pu‘mts) ...
View Full Document

This note was uploaded on 03/08/2011 for the course MAT 16B taught by Professor Ayyer,arvind during the Fall '10 term at UC Davis.

Page1 / 6

midterm-solution1 - Midterm 1, Course 168—2, Fall 2010...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online