aa6526_opg_matematikk_3mx_privatister_2005_12_07

aa6526_opg_matematikk_3mx_privatister_2005_12_07 - Eksamen...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Eksamen Fag: AA6524/AA6526 Matematikk 3MX Eksamensdato: 7. desember 2005 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister Oppgåva ligg føre på begge målformer, først nynorsk, deretter bokmål. / Oppgaven foreligger på begge målformer, først nynorsk, deretter bokmål. OPPGAVE 1 a) Deriver funksjonene: 1) f ( x ) = 3 tan 2 x 2) g(x) = x 2 ⋅ sin x b) 1) Bestem integralet: ∫x ⋅e 2x dx 2) I en formelsamling finner vi: ∫ ( sin x ) n dx = − 1 n −1 n −1 n −2 cos x ⋅ ( sin x ) + ∫ ( sin x ) dx n n Bruk formelen til å bestemme integralet: ∫ (sin x) 3 dx c) Løs ligningen ved regning: 3 sin x − 2 cos x = 2 x ∈ [0 , 2π d) 1) En arbeidstaker bestemte seg for å sette 20 000 kr inn på en konto i begynnelsen av hvert år, første gang det året hun fyller 47 år og siste gang det året hun fyller 67 år. Hvor mye har hun på kontoen i begynnelsen av det året hun fyller 67 år, når vi antar at innskuddsrenta i denne perioden har vært 4 % per år? 2) Hun vil ta ut 8 like store beløp i begynnelsen av hvert år fra det året hun fyller 68 år. Vi antar at rentefoten fortsatt er 4 % per år. Hvor mye kan hun ta ut hvert år? e) Skriv så enkelt som mulig: sin x sin( x + 60 ) − sin( x − 60 ) Eksamen AA6524/AA6526 Matematikk 3MX Side 11 av 15 OPPGAVE 2 Funksjonen f er gitt ved f ( x ) = −5 sin(0, 2618 x ) − 5 cos(0, 2618 x ) x ∈ [ 0 , 24 a) Tegn grafen til f. b) Løs ligningen f ( x ) = 0 ved regning. c) Finn f ′ ( x ) . Skisser grafen til f ′ . d) Forklar hvordan du ut fra grafen til f ′ kan bestemme eventuelle maksimums- og minimumspunkter til f. Lufttemperaturen g ( x ) målt i C gjennom et sommerdøgn på et sted var tilnærmet gitt o ved g ( x ) = f ( x ) + 19 der x er antall timer etter midnatt. e) Når på døgnet har vi høyeste og laveste temperatur? Bestem disse temperaturene. OPPGAVE 3 a) Vis at ligningen x + y + z − 2 x − 4y + 2 z = 3 beskriver en kuleflate. b) Finn koordinatene til sentrum og radius til kula. c) Vis at punktet A(2, 0, 1) ligger på kuleflata. 2 2 2 Linja gjennom sentrum i kula og punktet A skjærer kuleflata i et annet punkt B. d) Finn koordinatene til B. Eksamen AA6524/AA6526 Matematikk 3MX Side 12 av 15 OPPGAVE 4 Du skal besvare enten alternativ I eller alternativ II. De to alternativene er likeverdige ved vurderingen. (Dersom besvarelsen inneholder deler av begge, vil bare det du har skrevet på alternativ I, bli vurdert.) Alternativ I En kurve kan uttrykkes i polarkoordinater med formelen r = a(1 + cos bθ ) a) Lag skisser av kurven for noen forskjellige verdier av a og b. I resten av oppgaven setter vi a = 2 og b = 1 . Signalfølsomheten til noen mikrofoner lages etter en kurve av typen ovenfor. Vi sier at slike mikrofoner har en nyreformet karakteristikk, der r beskriver følsomheten for signaler fra ulike retninger. Arealet mellom kurven og andreaksen til høyre for andreaksen er et mål for signalmengden som mikrofonen tar opp forfra. b) Finn et mål for den signalmengden som kommer inn i mikrofonen forfra, det vil si ⎡ π π⎤ sektoren der θ ∈ ⎢ − , ⎥. ⎣ 2 2⎦ c) Finn ved regning et mål for den signalmengden som kommer inn bakfra. Alternativ II Bildet viser en vindeltrapp. Rekkverket følger en kurve gitt ved vektorfunksjonen r (t ) = [0, 85 cos t , 0, 85 sin t , 0, 54t + 1, 1] t ∈ [0 , 5 ] Enhetene på aksene er 1 m. Origo er på gulvet midt under trappa, og z-aksen peker rett oppover. a) Forklar at radien i trappa er 0,85 m, og at høyden av trappa er 2,70 m. b) Bruk formelen for buelengde til å finne lengden av kurven. ′ ′ c) Finn et uttrykk for r (t ) , og vis at vinkelen r (t ) dannet med z-aksen er konstant. Forklar hvordan du kunne ha funnet denne vinkelen ut fra opplysningene i a) og svaret i b). Eksamen AA6524/AA6526 Matematikk 3MX Side 13 av 15 OPPGAVE 5 Laboratoriet MedTest får en dag tilsendt blodprøver fra 20 personer. Vi forutsetter at de 20 personene er et tilfeldig utvalg av hele befolkningen, og at 1 % av befolkningen lider av en bestemt sykdom. Hvis en blodprøve inneholder et bestemt stoff, som vi kaller Q, lider personen av sykdommen. Vi forutsetter at laboratoriet kan avgjøre helt sikkert om en blodprøve inneholder Q, og at personen helt sikkert er syk hvis blodprøven inneholder Q. a) Hva er sannsynligheten for at ingen av de 20 blodprøvene inneholder Q? Hva er sannsynligheten for at høyst to av prøvene inneholder stoffet? For å analysere blodprøvene går laboratoriet fram på følgende måte: Hver blodprøve deles i to deler – en A-prøve og en B-prøve. De 20 A-prøvene blandes sammen og analyseres under ett. Hvis den samlede A-prøven for de 20 personene ikke inneholder Q, lider ingen av personene av den aktuelle sykdommen. Da er det ikke nødvendig å analysere Bprøvene. Det er altså nok med én analyse. Hvis den samlede A-prøven inneholder Q, lider minst én av de 20 personene av sykdommen. Da må laboratoriet i tillegg analysere hver av de 20 B-prøvene, for å finne ut hvem som er syk(e). Det må altså gjennomføres 21 analyser. Antall analyser X som laboratoriet må utføre for å undersøke 20 blodprøver, er en stokastisk variabel. b) Vis at sannsynlighetsfordelingen til X er gitt ved x P( X = x ) 1 0,818 21 0,182 c) Bestem forventningsverdien og standardavviket til X. Laboratoriesjefen ønsker å finne ut om MedTest har mindre utgifter ved å bruke framgangsmåten ovenfor, i forhold til å analysere hver av de opprinnelige blodprøvene for seg (dvs. uten å dele dem i en A-prøve og en B-prøve). Hun kartlegger omkostningene ved de ulike trinnene i analysen, og finner at det koster 20 kroner å dele én blodprøve i en A-prøve og en B-prøve det koster 50 kroner å analysere en prøve (uansett om det er en av de opprinnelige blodprøvene, den samlede A-prøven, eller en av B-prøvene) Eksamen AA6524/AA6526 Matematikk 3MX Side 14 av 15 d) Forklar at det koster Y = 400 + 50 X kroner å analysere prøvene med den framgangsmåten MedTest bruker. Bestem forventningsverdien og standardavviket til Y. e) Vurder om MedTest bør holde fast ved den framgangsmåten de bruker for å analysere prøvene, eller om de bør gå over til å analysere de opprinnelige blodprøvene hver for seg. I løpet av ett år er det 250 arbeidsdager. Vi tenker oss at MedTest får tilsendt 20 blodprøver hver av disse dagene. f) Laboratoriet vil undersøke hvor mye de sparer i løpet av året ved sin framgangsmåte i forhold til om de opprinnelige blodprøvene hadde blitt analysert hver for seg. Hva er sannsynligheten for at de sparer minst 100 000 kroner, dvs. i gjennomsnitt minst 400 kroner per dag? Eksamen AA6524/AA6526 Matematikk 3MX Side 15 av 15 ...
View Full Document

This note was uploaded on 03/08/2011 for the course MATH 3mx taught by Professor Tba during the Spring '11 term at Kungliga Tekniska högskolan.

Ask a homework question - tutors are online