02_Probability_part3

# 02_Probability_part3 - Ch1~6 p.25 Example 2.5(sum of two...

This preview shows pages 1–4. Sign up to view the full content.

NTHU MATH 2820, 2008, Lecture Notes Ch1~6, p.25 Example 2.5 (sum of two discrete random variables, TBp. 96) (Exercise: difference of two random variables, Z=Y X ) X and Y are random variables with joint pmf p ( x,y ). Find the distribution of Z = X + Y . p Z ( z )= P ( Z = z )= P ( X + Y = z )= x = −∞ p ( x,z x ) When X , Y independent, p ( x, y )= p X ( x ) p Y ( y ) , p Z ( z )= x = −∞ p X ( x ) p Y ( z x ) convolution of p X and p Y X Y made by Shao-Wei Cheng (NTHU, Taiwan) Ch1~6, p.26 2. method of cumulative distribution function (a special case of method 1 ) Let Y be a function of the random variables X 1 ,X 2 ,...,X n . 1. Find the region Y y in the ( x 1 ,x 2 ,...,x n ) space. 2. Find F Y ( y )= P ( Y y )bysumm ingth ejo in tpm fo r integrating the joint pdf of X 1 ,X 2 ,...,X n over the region Y y . 3. (for continuous case) Find the pdf of Y by di f erentiating F Y ( y ), i.e., f Y ( y )= d dy F Y ( y ). Note. It can be generalized to multivariate Y =( Y 1 ,Y 2 ,...,Y m ).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
NTHU MATH 2820, 2008, Lecture Notes Ch1~6, p.27 Example 2.6 (square of a random variable, similar example see TBp. 61) For y 0 , { Y y } = { y X y } F Y ( y )= P ( Y y )= P ( y X y )= F X ( y ) F X ( y ) f Y ( y )= d dy F Y ( y )= d dy F X ( y ) d dy F X ( y ) = f X ( y ) 1 2 y f X ( y )( 1 2 y ) = 1 2 y ( f X ( y )+ f X ( y )) and f Y ( y )=0for y< 0. X is a random variables with pdf f X ( x )andcd f F X ( x ). Find the distributon of Y = X 2 . made by Shao-Wei Cheng (NTHU, Taiwan) Ch1~6, p.28 Example 2.7 (sum of two continuous random variables, TBp. 97) (Exercise: difference of two random variables, Z=Y X ) X and Y are random variables with joint pdf f ( x, y ). Find the distribution of Z = X + Y . Let R z be { ( x, y ): x + y z } .Then , F Z ( z )= P ( Z z )= P ( X + Y z )= R z f ( x, y ) dxdy = −∞ z x −∞ f ( x,y ) dydx = z −∞ −∞ f ( x,v x ) dxdv (set y = v x ) f Z ( z )= d dz F Z ( z )= −∞ f ( x, z x ) dx When X , Y independent, f ( x, y )= f X ( x ) f Y ( y ), f Z ( z )= −∞ f X ( x ) f Y ( z x ) dx convolution of f X and
NTHU MATH 2820, 2008, Lecture Notes Ch1~6, p.29 Example 2.8 (quotient of two random variables, TBp. 98) (Exercise: product of two random variables, Z=XY ) X and Y are r.v. with joint pdf f ( x,y ). Find the distribution of Z = Y/X . Q z = { ( x,y ): y/x z } = { ( x, y ): x< 0 ,y zx } { ( x, y ): x> 0 ,y zx } F Z ( z )= Q z f ( x, y ) dxdy = 0 −∞ xz + 0 xz −∞ f ( x,y ) dydx = 0 −∞ −∞ z + 0 z −∞ xf ( x, xv ) dvdx (set y = xv ) = 0 −∞ z −∞ ( x ) f ( x, xv ) dvdx + 0 z −∞ xf ( x, xv ) dvdx = z −∞ −∞ | x | f ( x, xv ) dxdv f Z ( z )= d dz F Z ( z )= −∞ | x | f ( x, xz ) dx (= −∞ | x | f X ( x

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 03/11/2011 for the course STA 506 taught by Professor Lisa during the Spring '11 term at West Chester.

### Page1 / 12

02_Probability_part3 - Ch1~6 p.25 Example 2.5(sum of two...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online