solution2 - c r r P ( A B ) = P ( B ) A B P( ) 3-70 { } { }...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: c r r P ( A B ) = P ( B ) A B P( ) 3-70 { } { } { } { } { } { } { } x r ( 1 ) ( n ) r ( 1 ) ( n ) r ( n ) r ( 1 ) ( n ) r 1 2 n r 1 2 n F (x, y) = P ( X x, X y ) = P ( X x X y ) = P ( X y ) P ( X x X y ) = P ( X ,X , ,X y ) P ( x < X ,X , ,X y ) > " " [ ] [ ] = F(y) F(y) F(x) n n 3-77 1 2 n ( k ) ( k) ( k 1) ( k) ( k ) ( k) ( k ) ( k ) k n k U , U , , U ~ U( 0, 1), n! the joint p.d.f. of U and U is f (x, y) = x (1 y) , (k 2)! (n k)! U W = U U U = W Z let | J | = Z = U U = Z " 1 1 2 ( k 1) ( k) ( k) ( k ) ( k) k n k U 0 1 W Z = 1 U U 1 1 W Z n! then the joint p.d.f. of W and Z is g (w , z) = f (z , w + z) | J | = z (1 z w) (k 2)! (n k)! since 0 < U < U 1 0 < < w + z 1 0 < z 1 w thus, the ma z = < < < 2 1 w 1 w k n k k rginal p.d.f. of W is n! 1 g(w) = g (w , z) dz z (1 z w) dz , let u = , then du = dz (k 2)! (n k)! 1 w 1 w n! [ u (1 w) ] [ ( 1 u ) (1 (k 2)! (n k)! z = = 2 2 1 1 n k k n k k n w) ] (1 w) du n! (1 w) u ( 1 u ) du (k 2)! (n k)! n! ( ) ( ) (1 w) (k 2)! (n k)! ( ) = = n1 2 n1 1 k1 n n (1 w) , w 1 = n1 4-13 [ ] ( ) r x t suppose that f(x) is the p.d.f. of the random variable X, then 1 F(x) dx P ( X x ) dx f(t) dt dx 0 < x < t < f(t) dx dt = = = x x t f(t) dt E [ X ] suppose that X ~ Exp( ), then f(x) = e , F(x) = 1 e , 0 < x < , then E = = [ ] x x 1 1 [ X ] = 1 F(x) dx e dx [ e ] = = = A B x t x < t ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ beta function ~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ NTHU MATH 2820, 2008 Solution to Homework 2 made by 4-36 2 r r r 2 X ~ U( 0, 1), f(x) = 1, 0 x 1, Y = X (a) let G(y) be the d.f. of Y, then G(y) = P ( Y y ) = P ( X y ) = P ( X y ) = 1 dx thus, the p.d.f. of Y is g(y) = G (y) = 2 y, 0 y 1 E [ Y ] = y g(y) y 2 3 1 3 1 2 1 1 1 2 2 dy = 2 y dy = [ y ] = 3 3 (b) by Theorem 4.1.1. A. 2 2 E [ Y ] = x dx = [ x ] = 3 3 4-49 x y x y X ~ ( , ) , Y ~ ( , ), , X and Y are indep. Z = X + (1 )Y, (a) E [ Z ] = E [ X + (1 )Y ] = E [ X ] + (1 ) E [Y ] = + (1 ) = ( ) 2 2 2 2 2 2 x y 2 2 x (b) Var( Z ) = Var( X + (1 )Y ) = Var( X ) + (1 ) Var( Y ) X and Y are indep....
View Full Document

This note was uploaded on 03/11/2011 for the course STA 506 taught by Professor Lisa during the Spring '11 term at West Chester.

Page1 / 6

solution2 - c r r P ( A B ) = P ( B ) A B P( ) 3-70 { } { }...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online