Moed_A_Spring_2010_Solution

# Moed_A_Spring_2010_Solution - (236343) zeiaeyigd zxez...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (236343) zeiaeyigd zxez r"yz aia` '` cren oexzt '` wlg 1 dl`y 1 sirq . L 1 ∈ RE \ R . | L ( M ) | ≥ |h M i|-k zehyta gqpl ozip L 1 ly i`pzd z`y al miyp ziy`x w ∈ Σ * milind lk lr zxwean dvxda M z` dvixn `id h M i hlw lr :oldlck zlret L z` zlawnd M 1 dpekn f` h M i ∈ L 1 m` xexiaa .zlawn M 1 ,milin |h M i| zegtl elawzd m` . M ici lr elawzd milin dnk zxteqe dvxda aly meya f` h M i / ∈ L 1 m`e ;milin |h M i| zegtl elawzi ok` dvxda edylk alya ik dze` lawz M 1 . L ∈ RE okle L ( M 1 ) = L 1 okl .lawz M 1-y ick milin witqn elawzi `l hlw lk lry dpekn M x-y jk f (( h M i ,x )) = h M x i : L 1 / ∈ R-y ziciin raep dpnny HP ≤ L 1 divwecx d`xp ik gipdl ozip .(zxver dpi` dnvr `id mb zxver dpi` M m` m`e) dxvr M m` zlawne x lr M z` dvixn .(0-n lecb jxe`n `ed ziweg dpekn ly ceciw ik) cinz |h M x i| > m` :dzetwz z` d`xp .dheyt divlitnew zlert zrvan `id oky aeyigl zpzipe ,dzxcbdn d`ln divwecxd h M x i ∈ L 1 okle | L ( M x ) | = ∞ > |h M x i| xnelk ,hlw lk zlawn M x okle x lr zxver M f` ( h M i ,x ) ∈ HP | L ( M x ) | = okle hlw s` lr zxver dpi` M x mb okle x lr zxver dppi` M f` ( h M i ,x ) / ∈ HP m` ipy cvn .yxcpk .yxcpk h M x i / ∈ L 1 ok lre < |h M x i| 2 sirq . L 2 ∈ R w z` zazekd M w dpeknd w ∈ Σ * lkl lynl jk) L ( M ) = ∅ zeniiwnd M zepekn seqpi` zeniiw ik al miyp M zniiw irah n lkly o`kn .(dl`ky zepekn seqpi` yie L ( M w ) = ∅ zniiwnd dpekn `id dgec f`e hxqd lr zepekn ly iteq xtqn wx yiy jkn raep did efk zniiw dziid `l m` ixdy) |h M i| ≥ n sqepae L ( M ) = ∅-y jk df z`e ,iaeig irah xtqn bviin w m`d wecal wx yi w ∈ L 2 m` rixkdl zpn lr ok lr .( L ( M ) = ∅ zeniiwnd .rval ozipy oaenk 3 sirq . L 3 / ∈ RE dztyy dpekn ly ilnipind lcebd `ed k xy`k f (( h M i ,x )) = ( h M x i ,k ) :z`f dgikeny HP ≤ L 3 divwecx d`xp ,dxvr m`e x lr M z` dvixn :`ad ote`a zlretd dpekn M x-e ( k = min {|h M i|| L ( M ) = ∅} :zilnxet) dwix .oldl x`ezzy dpekn `id M L xy`k , M x ly w hlwd lr M L z` dvixn 1 zety ly iteq xtqn mb okle , k xzeid lkl lcebn ceciw zelra zepekn ly iteq xtqn wx yi ,irah k-y oeeikn zlra dxear dpekn s` oi`y L dty zniiwy o`kn . k-l deey e` ohw lcebn ceciw zelra zepekn odl yiy RE-a .ef L xear dpekn M L `dz ; k lcebn ceciw M x-n wlgk M ceciw :dheyt divlitnew zlert wx zrvan `id oky aeyigl zpzip `id .d`ln xexiaa divwecxd . ( h M i ,x ) divwecxd hlwa ielz epi` it lr) recie L ( M x ) = ∅ okle hlw s` lr zxver dpi` M x f` ( h M i ,x ) ∈ HP m` :divwecxd zetwz z` gikep M x f` ( h M i ,x ) / ∈ HP z`f znerl m` . ( h M x i ,k ) ∈ L 3 okle k lcebn M x-l dlewy M zniiw ok`y ( k zxcbd zniiw `l ok lre , L ( M x ) = L xnelk , M L dpeknd enk weica zbdpzn okle x lr M ziivleniq z` zniiqn .yxcpk , ( h M x i ,k ) / ∈ L 3-y jk , k lcebn dlewy dpekn M x-l 2 dl`y 1 sirq . L S / ∈ RE ik gikep jkae HP ≤ L S divwecx d`xp .idylk ziteq L ∈ S dty dlikn `id zil`ieeixh `l dpekz S-e xg`n ozip) w ∈ L m`d zwcea ziy`x w hlw lr xy` dpekn `id M x-y jk f (( h M i ,x )) = h M x i :jk xcbez divwecxd .dxvr M m` zlawne x lr M z` dvixn w / ∈ L m`e (drixk hxtae ziteq...
View Full Document

## This note was uploaded on 03/12/2011 for the course CS 236343 taught by Professor Bensasson during the Winter '11 term at Technion.

### Page1 / 6

Moed_A_Spring_2010_Solution - (236343) zeiaeyigd zxez...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online