Lesson_2 - 'n1 ilxbhpi`e il`ivpxtic oeayg (104010) 2 lebxz...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 'n1 ilxbhpi`e il`ivpxtic oeayg (104010) 2 lebxz oxia xnr :dkixr cwy inrp .xc ,ipinipa a`ei .text :ddbd uixw di`n :dqtcd `ean - zeivwpet ?divwpet idn . (1 B-a cigi xai` A-a xai` lkl dni`znd f dn`zdy xn`p . A, B zeveaw izy ozpda . B-l A-n divwpet `id . f : A → B :onqp ' & $ % ' & $ % s s s s s s-- : A B x y f . y ∈ B xai`d z` x ∈ A xai`l dni`zn f divwpetdy jkl oeniq df f ( x ) = y :ceqi ibyen . (2 .dxcbda A dveawd idef-- megz .` .dxcbda B dveawd idef-- geeh .a xnelk , A-a mixai`l lreta en`zedy B jezn mixai` ly dveawd-zz idef-- dpenz .b :dveawd idef { y ∈ B : y = f ( x ) miiwnd x ∈ A miiw } = { f ( x ): x ∈ A } xewn `xwp f ( x ) = y miiwnd megza x xai` lk ,dpenza y dcewp dpezpyk-- xewn .c . y ly :( xeyina zecewp ly sqe` ) zebefd sqe` edf-- sxb .d . ( x, f ( x ) ) : x ∈ a . f ly dpenzd = f ly geehd m` lr `id divwpety xn`p-- lr .e 1 xewn yi dpenza xai` lkl m` zikxr-cg-cg `id divwpety xn`p-- zikxr-cg-cg .f .cigi ( .zikxr-cg byenl df byen oia lcadd z` xiaqdl :lbxznl ) zexrd dxcbdd megzy gipp ,dxcbdd megz edn yxetn ote`a oiievn `le divwpet dpezp xy`k .1 .divwpeta aivdl ozipy miiynnd mixtqnd lk `ed .miiynnd mixtqnd lk `ed geehdy gipp ,oezp `l geehd xy`k .2 1 libxz . f ( x ) = √ x + 2 divwpetd dpezp ( .libxzd oexzt ick jez divwpetd sxb z` hhxy :lbxznl ) ?dzxcbd megz edn (` :oexzt . [- 2 , ∞ ) epid dxcbdd megze , x ≥ - 2 xy`k ,xnelk , x + 2 ≥ xy`k dxcbdd megza x ?dpenzd idn (a :oexzt ilily i` xtqn lk ok enke ,dxcbdd megza x lkl √ x + 2 ≥ ik [ 0 , ∞ ) `id dpenzd ozip dfk x-e , y 2 = x + 2 e` , y = √ x + 2 :miiwnd x `evnl jixv ik jxrk lawzn y ≥ . x = y 2- 2 i"r ?lr `id divwpetd m`d (b .miilily mikxr zlawn dpi` divwpetd mcewd sirqd itl .`l :oexzt ?zikxr-cg-cg divwpetd m`d (c xewnd `ed x = y 2- 2 ik d`xn (a) -a aeyigd f` dpenza y ∈ [ 0 , ∞ ) m` ik ,ok :oexzt . y cigid ( .onf yi m` :lbxznl ) zeibef . (3 .megza x lkl f ( x ) = f (- x ) zniiwnd divwpet ef-- zibef divwpet .` .megza x lkl- f ( x ) = f (- x ) zniiwnd divwpet ef-- zibef-i` divwpet .a ( .zibef-i`/zibef divwpet ly zitxbd zernynd z` xiaqdl :lbxznl ) 2 libxz .oezpd megza ze`ad zeivwpetd zeibef z` weca 2 . R megza f ( x ) = x 2 (` . R megza f ( x ) = x 3 (a . R megza f ( x ) = x 2 + x (b :oexzt .zibef `id divwpetd okle R-a x lkl f (- x ) = (- x ) 2 = x 2 = f ( x ) (` .zibef-i` `id divwpetd okle R-a x lkl f (- x ) = (- x ) 3 =- x 3 =- f ( x ) (a okle f (- x ) = (- x ) 2 + (- x ) = x 2- x ik ,zibef-i` dpi`e zibef dpi` divwpetd (b . x 6 = 0 lkl f (- x ) = x 2- x 6 = ± ( x 2 + x ) = ± f ( x ) zeixhpnl` zeivwpet ly zegtyn minepilet .1 dxevdn iehia `ed n dlrnn mepilet f ( x ) = n X i =0 a...
View Full Document

Page1 / 11

Lesson_2 - 'n1 ilxbhpi`e il`ivpxtic oeayg (104010) 2 lebxz...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online