{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Lesson_4 - 'n1 ilxbhpi`e il`ivpxtic oeayg(104010 4 lebxz...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 'n1 ilxbhpi`e il`ivpxtic oeayg (104010) 4 lebxz crlb oxr :dkixr oxia xnr ,cwy inrp x"c ,ipinipa a`ei 'text :ddbd uixw di`n :dqtcd :zexcbd .mixtqn ly dveaw A `dz . M ≥ a ,a ∈ A lkly jk M ∈ R miiw m` lirln dneqg A .1 . A dveawl lirln mqg `xwii M . m ≤ a ,a ∈ A lkly jk m ∈ R miiw m` rxln dneqg A .2 . A dveawl rxln mqg `xwii m . | a | ≤ M a ∈ A lkly jk M miiw n"n` ,rxlne lirln dneqg A m` dneqg A .3 :`nbec lirln dneqg `l la` . e` ,lynl ,- 1 2 i"r rxln dneqg N = { 1 , 2 , 3 ,... } dveawd • .dneqg `l okle ,lynl , 17 i"r lirln) .dneqg (1 , 2] rhwd ,xnelk A = x ∈ R 1 < x ≤ 2 dveawd • ( . i"r rxlne . max A epnqp . dveawd ly meniqwnd `xwp `ed xzeia lecb xtqn yi A-a m` .4 . min A epnqp . dveawd ly menipind `xwp `ed xzeia ohw xtqn yi A-a m` .5 :`nbec . 1 / ∈ A ik menipin oi` A-l j` . max x ∈ A x = 2 A = (1 , 2] dveawa • :miiwny xtqn `ed A ly menxteqd .lirln dneqg A `dz .6 . A ly lirln mqg `ed .` . A ly xzeia ohwd lirln mqgd `ed .a sup A :epnqp :miiwny xtqn `ed A ly menitpi`d .rxln dneqg A `dz .7 . A ly rxln mqg `ed .` . A ly xzeia lecbd rxln mqgd `ed .a inf A :epnqp :`nbec-a hiap • . sup A = 2 ∈ A , inf A = 1 / ∈ A A = (1 , 2] :zexrd .dveawa xai` gxkda `l menitpi` /menxteqd .1 . sup A = max A f` sup A ∈ A m` .2m` ....
View Full Document

{[ snackBarMessage ]}