Lesson_10 - 'n1 ilxbhpi`e il`ivpxtic oeayg (104010) 10...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 'n1 ilxbhpi`e il`ivpxtic oeayg (104010) 10 lebxz daiib ixei :dkixr oxia xnr ,cwy inrp x"c ,ipinipa a`ei 'text :ddbd uixw di`n :dqtcd mieqn `l lxbhpi`-y jk F ( x ) divwpet `id I rhwa f ( x ) divwpetd ly (mieqn `l lxbhpi` e`) dnecw divwpet f` , F ( x ) = f ( x ) m` okle reawa efn ef zelcap zenecw zeivwpet izy lk . F ( x ) = f ( x ) ly ziqiqa dniyx mixikn ep` . Z f ( x ) d x = F ( x ) + C i"r zpzip zillkd dnecwd divwpetd 1 .zeiqiqad zeivwpetd ly zexfbpd zniyx jetidn milawznd - "miiciin milxbhpi`" mi`ad miiqiqad millkd ipy z` miaipn ( f + g ) = f + g- e ( af ) = af dxifbd illk ipy :milxbhpi`l Z ( f ( x ) + g ( x ) ) d x = Z f ( x ) d x + Z g ( x ) d x Z αf ( x ) d x = α Z f ( x ) d x 1 libxz :mi`ad milxbhpi`d z` eayg Z (3 x- 1) 2 x d x (`) Z tan 2 x d x (a) Z d x 3 + 2 x (b) reaw a > , Z d x x 2 + a 2 (c) Z d x 1 + cos x (d) ly 3 cenra ,qxewd ly (oyid) xz`ay "invr cenill xneg - miieqn-`l lxbhpi`" uaewa `evnl ozip dniyxd z` 1 .14 -e 11, 10 ,9 ,8 ,7 ,6 ,3 ,2 ,1 :md ef dniyxa mdixtqny milxbhpi`d z` miiciinl aiygp .uaewd 1 :oexzt (`) Z (3 x- 1) 2 x d x = Z 9 x 2- 6 x + 1 x d x = 9 Z x d x- 6 Z d x + Z 1 x d x = 9 2 x 2- 6 x +ln | x | + C (a) Z tan 2 x d x = Z 1 cos 2 x- 1 d x = tan x- x + C :zeletk zeiefl zeiedfd oke ,ef zedf . tan 2 x = 1 cos 2 x- 1 zedfa epynzyd) sin 2 x = 2 sin x cos x cos 2 x = cos 2 x- sin 2 x = 2 cos 2 x- 1 = 1- 2 sin 2 x (.t"ra oze` xekfl yie ,jynda d`xpy itk ,milxbhpi` iaeyiga daxd zeriten ln | 3 + 2 x | zxifbay xg`n :dwicae yegipa xfrdl ozip df sirqa lxbhpi`d aeyigl (b)-y wiqdle mi`zn reawa ltk ici-lr "owz"l ozip , 2 3 + 2 x milawn Z d x 3 + 2 x = 1 2 ln | 3 + 2 x | + C-y wecale ygpl lw illk ote`a Z f ( ax + b ) d x = 1 a F ( ax + b ) + C f` , Z f ( x ) d x = F ( x ) + C m` .mireaw b-e a 6 = 0 lkl-y lawp ,(b) sirqay oexwrd it-lr (c) Z d x x 2 + a 2 = 1 a 2 Z d x ( x a ) 2 + 1 = 1 a 2 · a arctan x a = 1 a arctan x a + C Z d x 1 + cos x = Z d x 2 cos 2 x 2 = tan x 2 + C (d) miwlga divxbhpi` :ozep ( uv ) = u v + uv dgqepd ly jetid 2 miwlga divxbhpi` zgqep Z u ( x ) v ( x ) d x = u ( x ) v ( x )- Z u ( x ) v ( x ) d x .(epnn wlg e`) cpxbhpi`d z` ,mvnvl e` ,hytl `ed miwlga divxbhpi` ly ipiit` yeniy oeni` zyxec `ide dil`n zpaen dpi` u,v ly dxigad oldly (b) e` (a) mitirqa enk ,minrtl .oeiqpe 2 libxz :mi`ad milxbhpi`d z` eayg Z x 2 sin x d x (`) Z arctan x d x (a) Z x 2 ( x 2 + 1) 2 d x (b) :oexzt gwip (`) u ( x ) = x 2 v ( x ) = sin x u ( x ) = 2 x v ( x ) =- cos x f`e Z x 2 sin x d x =- x 2 cos x + Z 2 x cos x d x =- x 2 cos x + 2 Z x cos x d x :gwip .miwlga divxbhpi`a aey ynzyp dfd lxbhpi`d aeyigl u ( x ) = x v ( x ) = cos x u ( x ) = 1 v ( x ) = sin x f`e Z x cos x d x = x sin x- Z sin x d x = x sin x + cos x + C :lawp mcewd oeieya davd ici-lr Z x 2 sin x d x =- x 2 cos x + 2 x sin x + 2 cos x + C ick , v-e u zxigaa miiawr zeidl aeyg miwlga divxbhpi`a xfeg yeniya :dxrd .`vend dcewpl xefgl `l gwip (a) u ( x ) = arctan x v ( x ) = 1 u ( x ) = 1 1 + x 2 v ( x ) = x...
View Full Document

This note was uploaded on 03/12/2011 for the course MATH 104010 taught by Professor Dr.miriambarazinna during the Winter '11 term at Technion.

Page1 / 13

Lesson_10 - 'n1 ilxbhpi`e il`ivpxtic oeayg (104010) 10...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online