This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: AMS 345/CSE 355 (Fall, 2010) Joe Mitchell COMPUTATIONAL GEOMETRY Homework Set # 4 Solution Notes (1). ORourke, problem 5, section 3.2.3, page 68. The algorithm as given in the text assumes that no three points are collinear. If there are 3 or more collinear points on the boundary of the convex hull, then it will report as extreme every pair of such points that is properly oriented (forming an edge that has the other points on or to the left), whereas we really want only to report the pair of points that define the endpoints of the corresponding edge of the convex hull. Thus, we want to exclude a pair ( p i , p j ) of points from being extreme if either (1) there is a point p k strictly to the right of the oriented line p i p j or (2) there is a point p k on the line p i p j that does not lie between p i and p j . We give pseudocode below. Algorithm: Extreme Edges for each i do for each j negationslash = i do for each k negationslash = i negationslash = j do if Left( p j , p i , p k ) or (Collinear( p i , p j , p k ) and NOT Between( p i , p j , p k )) then ( p i , p j ) is not extreme (2). ORourke, problem 4, section 3.4.1, page 72. Consider the set of points S that consists of one point at (1 , 0), one at ( 1 , 0), and n 2 points ( p 2 , p 3 , . . . ) on the unit circle centered at the origin, at angles / 2, / 4, / 8, . . . , respectively, with respect to the positive xaxis. These n points all lie on the unit circle. If QuickHull( a, b, S ) is called with a = (1 , 0) and b = ( 1 , 0), then we spend n steps to obtain that c = p 2 , then n 1 steps in the call to QuickHull( a, p 2 , A ) to obtain that c = p 3 , etc. The recursion is badly unbalanced, with all the remaining points always falling to the right of c ; this results in n + ( n 1) + ( n 2) + = ( n 2 ) time in total....
View
Full
Document
This note was uploaded on 03/13/2011 for the course AMS 345 taught by Professor Mitchell,j during the Spring '08 term at SUNY Stony Brook.
 Spring '08
 Mitchell,J

Click to edit the document details