MAC2313_Test2_Spring2010_Solutions

MAC2313_Test2_Spring2010_Solutions - Page 1 of 4 MAC 2313...

Info icon This preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Page 1 of 4 MAC 2313 Name Test 2 Date: February 11, 2010 Clearly show all work for full credit. 1. (8 points) Find r(t) if r"(t)=2i+6tj+12t2k and r’(0)=i and ’(0):j’k' “PM-<0 0 '> . ‘ ) Q. .2: < a, (at, ‘1’?” K0 F”(ol = 0,0107 i We): weal-3) 49> + C ~‘) *7 F5103)»: <o.oio> + C. g<h0i0> 1‘) C»: <"°IO> F"({:) : < at“, 3259, Ht3> F49): < taint, t3) t“l >+ (L 73(0) : (0,0) o> HZ):- <011,«:1> => Q: «Din-w F" (t) : < taut, t3+() t“~i> 2. (8 points) Find the length ofthe curve given by r(t)=4sin(t)i—3tj+4cos(t)k, Where 0933- 2 <45m<cij —3t) “legs (é)> Flog) : < were). —3, «we» 73ml 2: may“) +6? 1— lefn’hE) 2 W I 5— \3 ‘ s = fl F’Wsllfi = 3.) 5v“ = ’5 3. (8 points) A plastic bucket (right circular cylinder) has diameter 20 inches and height 20 inches. The plastic is 0.5 inches thick. Use differentials to estimate the amount of plastic (in cubic inches) needed to make the bucket. .. a raw" V“ ”FA [‘th AV: WW + arer Amos” 11 {EA AA = 203,5"): 1(1)?) .1 01V: nciooim + anomboxom : 300“— ML that“ I! no £0?) am (IA: 0'5- ” ital/k alV = “WORDS + angioyaoi (0.9 :— QSOTF Calm; Mala Page 2 of4 4. (8 points) On the same 132- plane, draw the level curves associated with K - -l ,0, l, and 2, for the function f(x, y): 11y x Label one point on each curve. K2‘l:(40 Qua/Q Curve) K: 9 K20: («51:1Jvex2123 1/278z K=lf 1:371:12» 74% Ken: 921F131 => ”:93” —,—xy——— (x y) i (0 0) 5. (8 points) Determine whether the fiJnction f (x y)- _ x + xy + y %m(x’y) :(O’O) is continuous. Explain your reasoning ’KV aflyz X‘QKLS Z, 52 :1 O E ‘ «9 3 Ma ’Y (M X +’X"f f'Y «(:0 . (19111-310101 9‘ “7 ° 1 :2 Q X 1 i“ 0? XY 1 a ' ’YI’X [(2—1 3% 3: “:3 ‘4” 7i +7<y +7 7<->o (IX/Y) ‘7 (0)0) v x _ ‘ ‘Qck. x3+7211 MIR DAN; 1”:> 10 13 nut 034514ch («name/o) 4,6 (0, 01 6. (8 points) Suppose r(t) :< If ,t2 >. Determine an equation ofthe normal plane at the point (1,1,1). ’V 15:1 91(11- <1,ac,;zt> =5 "r3111: <1 51 a> if“) 15 0» Kora-14,6 Veefiyr fix a“ “WAVE fflfia‘é ‘L6 (I, I) I) 1 -> S ”Rte, F), (I\ (is {n (11¢ Sic/11¢ per/"6,065“ 115 T (l) ) F7 (Cl) [3 (£50 6L. (11%me veL/éb/ gr 0113 Pflazte, , (L éfiuafiioq gr Ila, [\W‘I‘mfl F/zQ/ie 4,1": (’1 (I 1‘) kg I I 1 1 1 «+215, +32 :5— Page 3 of4 7. (8 points) A sequence of periodic payments of 1 forms an annuity. The present value of this annuity, z, is a function of the interest rate used for discounting the payments, I, and the number of payments, N. Symbolically, z = f ( I , N ). The table below shows present values for the given values of l and N. Use the table to determine a linear approximation of the present value when the interest rate is 5.75% and there are 16 payments. I as a 5nercent ii-I-i 10 8353 7572 702 64— “94 10-38 8814 12 46 10 59 1741 1409 11.65 CUrqulif, pl: (6)15) : ZzPCBJS): “‘6“! >41: 4‘ 1 -0173 Ave—Fag" 24‘5"” _._ l0:8: =~01¢Ll 194676? ’0‘“ 2: £07.53 = filo » , z {3(5193277; 4. 2 o 53; mm“ guts, lSl . 2 use» 2,01383M> p (5 )5) : 0.97% z: {Raga-411% A} = 0 ‘~H N I LC: N3 : «on: (1:53 + 0%“,va + 10.38 I L(5’75 IQ :: ~o.7i(o.7§) + OH’HUl + “938 r; [0.3; ‘ ) 8. (8 points) Determine the curvature of r(t) :< t2 ,0,t > at the point (0,0,0). ”v C 1 0 PW): 424,0)» 2—4» '(m: <0,0,i> ? 177%): «320,07 2) ‘r’-"(o\= 920,0) F’YOB x F”(o) :: <0,9,o> I s 22 : _- - a I ~)[(O)13 (3 K __ (PM x F7”(o)\ 4‘ 9. (8 points) Given f(x,t)=e"sin(2xt),detennine f,(1,0), 1'? ‘Ft (1,150: a“? C03 (3909 ' 9X " a 5m (2115) Q (1,03: «mic»; - Memo): Page 4 of4 10. (8 points) Given 1110912) 2 z — x, find 232;. Simplify answer completely. 3 , l ( “DE _, 32 6“- «W. 1V;+‘X%va f‘O V xv E V D V a 2~ . i 2?: :> m 5:, f 7&3 ‘1 ”We 61/ _ /U (-6; «’5 ”Z O M> E __ lg...— : fig...— : (CuiicéZ/Q scam M By “ xyg~><y 70/(24) “((3—0 «#0 ll. (6 points each) You are given u(x,t) : sin(x — at). (a) Determine u". Mb : COS (Xedél » (‘al : «@605 (7(»6sz> aw : asc‘n we» (—0 : wags/A (V~aé> (b) Determine urn. (“(1 T- C05 ('X ‘ ké) M X X 1‘ —‘ SM (”XL“ afi) 12. (8 points) Suppose f is a differentiable function of x and y, and g(u,v) = f(2u — v,v2 — 4u). Use the table below to calculate gv(1,2). <00 { Willi-:27 ax (1:2) 6 3 2 5 x: wa/ ET: *1 ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern