Proofs - C Material Equivalence 6 8. (A•C) v (~A•~C)...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Proofs 6. T • (U v V) W  X T [U (W•X)] (T•V) ~(W v X) (T•U) (W•X) 2, Exp (T•V) (~W•~X) 3, DeM [(T•U) (W•X)] • [(T•V) (~W•~X)] 4, 5 conj (T•U) v (T•V) Dist, 1 (W•X) v (~W•~X) CD, 6,7 W  X Material Equivalence, 8 1. Y Z ~Y 2. Z [Y (RvS)] 3. R  S 4. ~(R • S) 5. (R •S) v (~R • ~S) 3, Equiv 6. ~R • ~S DS 4,5 7. ~(R v S) DeM, 6 8. Y [Y (RvS)] HS 1,2 9. (Y • Y) (R v S) Exportation, 8 10. Y (R v S) Tautology, 9 11. ~Y MT 10, 7 8. ~A • ~C 1. A B 2. B C 3. C A 4. A ~C 5. A C 1, 2 HS 6. (A C) • (C A) conj, 3,5 7. A
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: C Material Equivalence 6 8. (A•C) v (~A•~C) Material Equiv 7 9. ~A v ~C Material Implication 4 10. ~(A • C) DeM, 9 11. ~A • ~C DS 8, 10 1. (D•E) ~F 2. F v (G•H) D E (D E) • (E D) 3, equiv D E 4, simp D (D•E) Abs, 5 7. D ~F HS 1, 6 8. (F v G) • (F v H) dist, 2 9. F v G 8, Simp 10 ~~F v G Double Negation, 9 11. ~F G 10, Imp 12. D G HS 7, 11 Section D Exercises 4. H I H (I•J) ~H v (I•J) 1, Imp (~H v I) • (~H v J) 2, Dist ~H v I Simp 3 H I Imp, 4 whereas is a disjunction...
View Full Document

This note was uploaded on 03/16/2011 for the course PHIL 045 taught by Professor Hopper during the Fall '07 term at GWU.

Page1 / 2

Proofs - C Material Equivalence 6 8. (A•C) v (~A•~C)...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online