This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: IEOR 161  Introduction to Stochastic Processes Spring 2010 HW5 Solutions ** Note that the numbering is from Ross 9th Edition 5.36 a) E [ S ( t )] = E S (0) N ( t ) Y i =1 X i = S (0) E E N ( t ) Y i =1 X i N ( t ) = n E N ( t ) Y i =1 X i N ( t ) = n = E " n Y i =1 X i N ( t ) = n # = n Y i =1 E [ X i  N ( t ) = n ] = n Y i =1 1 = 1 n E [ S ( t )] = S (0) E E 1 n N ( t ) = n = S (0) X n =0 1 n P ( N ( t ) = n ) = S (0) X n =0 1 n e t ( t ) n n ! = S (0) e t X n =0 t n n ! = S (0) e t e t = S (0) e t ( 1  1 ) 1 b) E [ S ( t ) 2 ] = E S (0) 2 N ( t ) Y i =1 X 2 i = S (0) 2 E E N ( t ) Y i =1 X 2 i N ( t ) = n E N ( t ) Y i =1 X 2 i N ( t ) = n = E " n Y i =1 X 2 i N ( t ) = n # = n Y i =1 E [ X 2 i  N ( t ) = n ] = n Y i =1 2 2 (see bottom of pg. 282) = 2 2 n E [ S ( t ) 2 ] = S (0)...
View
Full
Document
 Spring '08
 Lim
 Operations Research

Click to edit the document details