This preview shows pages 1–3. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: MAT 1332: CALCULUS FOR LIFE SCIENCES JING LI Contents 1. Review: Functions of several variables I: Introduction 1 1.1. Functions of two or more independent variables 1 1.2. The level set 1 1.3. Limits and continuity 1 2. Function of several variables II: Partial derivatives 1 2.1. Definition 1 2.2. Geometric interpretation of partial derivatives 3 2.3. Linear approximation 7 1. Review: Functions of several variables I: Introduction 1.1. Functions of two or more independent variables. Domain Range 1.2. The level set. 1.3. Limits and continuity. 2. Function of several variables II: Partial derivatives 2.1. Definition. Suppose that the response of an organism depends on a number of independent variables. To investigate this dependency, a common experimental design is to measure the response when changing one variable while keeping all other variable fixed. This experimental design illustrates the idea behind partial derivatives. Suppose we want to know how the function f ( x,y ) changes when x and y change. Instead of changing both variables simultaneously, we might get an idea of how f ( x,y ) depends on x and y when we change one variable while keeping the other variable fixed. To illustrate this we look at Example 1. f ( x,y ) = x 2 y We want to know how f ( x,y ) changes if we change one variable, say x , and keep the other variable, in this case, y , fixed. We fixed y = y , then the change of f with respect to x is simply the derivative of f with respect to x when y = y . That is, d dx f ( x,y ) = d dx x 2 y = 2 xy . Such a derivative is called a partial derivative. Date : 20100322. 1 2 JING LI (1) Functions of two variables Definition. Partial derivative Suppose that f is a function of two independent variables x and y ....
View
Full
Document
This note was uploaded on 03/19/2011 for the course MAT 1332 taught by Professor Munteanu during the Spring '07 term at University of Ottawa.
 Spring '07
 MUNTEANU
 Continuity, Limits

Click to edit the document details