{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

261StudyGuide

# 261StudyGuide - March 2001 PURDUE UNIVERSITY Study Guide...

This preview shows pages 1–2. Sign up to view the full content.

March 2001 PURDUE UNIVERSITY Study Guide for the Advanced Placement Exam in Multivariate Calculus This study guide describes briefly the topics to be mastered prior to attempting to obtain credit by examination for MA 261. The material covered is the calculus of several variables, and it can be studied from many textbooks, almost all of them entitled CALCULUS or CALCULUS WITH ANALYTIC GEOME- TRY. The textbook currently used at Purdue is CALCULUS – Early Transcendentals, 4th edition, Stewart, Brooks/Cole. IMPORTANT : 1. Study all the material thoroughly. 2. Solve a large number of exercises. 3. When you feel prepared for the examination, solve the practice problems. 4. Come to the examination rested and confident. The subject matter of the calculus of several variables extends the student’s ability to analyze functions of one variable to functions of two or more variables. Graphs of functions of two variables or of equations involving three variables may be thought of as surfaces in three dimensions. Tangents, normals, and tangent planes to these surfaces are part of the subject matter of the calculus of several variables. The concept of volume is defined for three-dimensional solids. These new concepts require the introduction of partial derivatives and multiple integrals. Most of the problems to be solved require the repeated application of ideas and techniques from the calculus of one variable. Accordingly, a good grasp of the notions of di ff erentiation and integration for functions of one variable is a necessary prerequisite for the study of the calculus of several variables. Several of the concepts from plane analytic geometry are also generalized in the course, leading to a brief study of three dimensional analytic geometry, including such topics as planes and the quadric surfaces (whose cross sections are conics), and three dimensional coordinate systems, including rectangular, cylindrical and spherical coordinates, and the relationships among these. The topics to be studied prior to attempting the attached practice problems are listed below 1. Analytic Geometry of Three Dimensions Angle between two vectors, scalar product, cross product, planes, lines, surfaces, curves in 3 dimensional space. 2. Partial Di ff erentiation Functions of several variables, partial derivatives, di ff erential of a function of several variables, partial derivatives of higher order, chain rule, extreme value problems, directional derivatives, gradient, implicit functions. 3. Multiple Integrals Double integrals, iterated integrals in rectangular and polar coordinates, applications, surface integrals, triple integrals in rectangular, cylindrical and spherical coordinates. 4. Line and surface integrals, independence of path, Green’s theorem, divergence theorem.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern