6232C - Answers to PF Exam number : 6232C PLANE...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Answers to PF Exam number : 6232C PLANE TRIGONOMETRY (6232C) 1) Find the Sine, Cosine, Tangent and cotangent of: a) Sin 122o = 0.848; cos 122o = ­0.530; tan 122o = ­1.600; cot 122o = ­0.625 b) Note: 315o 12' = 315.2o Sin 315o 12' =­0.705; cos 315o 12' = 0.710; tan 315o 12' = ­0.993; cot 315o 12' = ­1.007 c) 275o 13' 37" = 275.2269444o Sin 275o 13' 37" = ­0.996; cos 275o 13' 37" =0.091; tan 275o 13' 37" = ­10.931; cot 275o 13' 37" = ­0.915; d) 193o 41' 51" = 193.6975o Sin 193o 41' 51" =­0.237 cos 193o 41' 51" = ­0.972; tan 193o 41' 51" = 0.244; cot 193o 41' 51" = 4.103; 2) Using exact values find the numerical values of a) Sin 30o cos 240o +sin 210o sin 300o = (1/2)*(­1/2) + (­1/2) (­√3/2) = ­ (1/4) + (√3/4) = (√3­1)/4 b) Tan 225o + tan (­45o) = (1) + (­1) = 0 3) Express each of the following as same function of a positive acute angle: Note: sin(a) = sin(180o ­ a); cos(a) = ­cos(180o ­ a); tan(a) = ­tan(180o ­ a); sin(­a) = ­sin(a); cos(­a) = cos(a); tan(­a) = ­tan(a) a) Cos 112o 33' = ­cos 67o 27' b) Tan 310o = tan (­50o) = ­tan 50o c) Cot 138o 15' 10" = ­cot 41o44'50" d) Sin (­140o) = ­sin 140o = ­sin 40o 4) Express each as a function of θ a) sin (270o + θ ) sin (A+B) = sin (A) cos (B) + sin (B) cos (A) Using the formula, we can find that Sin (270°+θ) =sin270°cosθ+sinθcos270° but cos 270° = 0 and sin270° = ­1 So sin (270°+θ) = ­cos θ b) Cos ( π + θ ) Using formula Cos(A+B)= cos(A) cos(B)­sin(A) sin(B) = cos( π )cos θ ­ sin( π )sin θ = ­1cos θ ­ 0 = ­cos θ Cos ( π + θ ) =­cos θ c) Tan (810o + θ ) using formula Tan (A+B) = tan A + tan B tan 810 + tan θ − 0.5871 + tan θ = = 1 − tan( A) tan( B ) 1 − tan(810)(tan θ ) 1 + 0.5871 tan θ d) Sin ( θ ­180o) = sin θ cos 180o – cos θ sin180o = ­sin θ 5) Find the value of: a) Log sin 62o 22' 33" = ­0.053 b) Log cot 28 o 13' 17" = 0.270 c) Log cos 125 o 15' 23" = ­0.577 No answer, because it is a negative number and you can't take log of a negative number. d) Log tan 78o 45' 50" = 0.702 6) Find the acute angle A, to the nearest second when: There are no solutions to (a) or (b) as I understand the problem ­ as you can see in the work below, finding A is out of the domain range because cos of any angle could never equal 109.12575 ­ a number much much bigger than 1. Am I misreading the problem? I believe this is log10(cosA) = 9.12575. Is this correct??? Please email me back and we will see if we can figure this out. a) Log cos A=9.12575 109.12575 = cosA A = cos­1 109.12575 A = b) Log sin A=9.91655 109.91655 = sinA A = sin­1 109.1655 A = c)log cot A=0.11975 100.11975 = cotA A = cot­1 100.11975 A = 0.18939 = 0o 1' 8" d)log tan A=0.06323 100.06323 = tan A A = tan­1 100.06323 A = 49.156259 = 49o 9' 22" 7) Simplify sin (90 o + x) sin (180 o + x) cos (90 o + x) cos (180 o ­ x) =[sin(90 o)cos(x) + cos(90 o)sin(x)]* [sin(180 o)cos(x) + cos(180 o)sin(x)]*[cos(90 o)cos(x) ­ sin(90 o )sin(x)]*[cos(180 o)cos(x) + sin(180o)sin(x)] = [cos(x) + 0]*[0 ­ sin(x)]*[0 ­ sin(x)]*[­cos(x) + 0] = ­sin2(x) cos2(x) 8) Solve the right triangle by logarithms: A=28 o 30', b=18.3 B = 61.5o or 61o 30' C = 900 Side a = 9.936 Side c = 20.823 Solve the following oblique triangles 9) a =31,b=15, c=17. Using law of cosines: 2 2 2 c =a +b ­2ab cos(C) 172 = 312 + 152 ­ 2(31) (15)cos(C) 1054cosB = 1025 cosB = 0.972 B = 13.47o 312 = 152 + 172 ­ 2(15)(17)cosA ­510cosA = 447 cosA = ­0.876 A = 151.22o C = 15.31o 10) B = 115o 30' , C = 20o 29' ,a=23.47. A = 44o 1' Sin (115o 30') / b = sin (44o 1) / 23.47 b = sin(115o 30')*23.47 / sin(44o 1) b = 30.486 Sin (20o 29') / c = sin (44o 1) / 23.47 c = sin(20o 29')*23.47 / sin(44o 1) c = 11.819 11) a = 134.2,b = 84.54, B = 52o 9' 11" Sin (52o 9' 11") / 84.54 = sin (A) / 134.2 Sin (A) = 134.2* Sin (52o 9' 11”) / 84.54 A = Does not exist This triangle is not possible. 12) a = 627.7, b = 412.2, A = 66o 47' Sin66o 47' / 627.7 = sin(B )/ 412.2 Sin(B) = 412.2* sin66o 47' / 627.7 = 0.6035 B = 37.12o = 37o7'17" C = 76.095o = 76o 5' 43" Sin 66o 47' / 627.7 = sin37o7'17" / b b = 627.7 * sin37o7'17" / sin66o 47' b = 412.19 ...
View Full Document

This note was uploaded on 03/21/2011 for the course BUS 123 taught by Professor Professorjames during the Spring '11 term at Central Pennsylvania.

Ask a homework question - tutors are online