{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# 243134 - And 4x y-3z=7……Ignore 2 and 7 do cross==4i 26j...

This preview shows page 1. Sign up to view the full content.

13.4 RHR is nR is perp to V, and nR is perp to W //nR// = 1, v x w points toward nR Area of Parallellogram A = //w//*//v//*sin (theta) Or V x W = matrix CROSS = (v2w3-v3w2)i+(v3w1-v1w3)j+(v1w2-v2w1)k I*j = k……..j*k=i…….k*i=j V x W = 0, then v // to w Let v=2i+j-2k, w=3i+k V x W = i-8j-3k …THEN find A of Parallellogram A = //V x W// ==SQRT(1+8^2+3^2)==8.6 DIVIDE by 2 to find A of triangle==4.3 Vector Parallel to intersection of planes 2x-3y+5x=2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: And 4x+y-3z=7……Ignore 2 and 7, do cross==4i+26j+14k Eq of plane through (1,1,1)(0,1,2)(2,-5,0) A(x-xo)+b(y-yo)+c(z-zo) = o…P1P2=-i+0j+k P1P3 = i-6j-k….n = P1P2 X P1P3=6i+6k Find unit vector to plane 6i+6k. SQRT(6^2+6^2)=SQ(72) so n = n/(//n//) OR 6/SQ(72)*(i+k) PLUG into equation P1=(1,1,1)….6(x-1)+6(z-1)=0 6x+6z=12…. .therefore x+z=12...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online