quiz09_s107_solns

# quiz09_s107_solns - y t = K(1 Ae-kt is a solution to this...

This preview shows pages 1–2. Sign up to view the full content.

Math 1B Quiz 9 Solutions Section 107 November 23, 2009 1. (4 points) Find an equation of the curve that passes through the point (0 , - 1) and whose slope at ( x,y ) is x 2 /y . (Give your answer explicity in terms of y .) We are given that dy dx = x 2 y . This is a separable diﬀerential equation, so we solve it directly: Z y dy = Z x 2 dx y 2 / 2 = x 3 / 3 + C y 2 = 2 x 3 / 3 + 2 C. By the initial condition, ( - 1) 2 = 0 + 2 C , so y 2 = 2 x 3 / 3 + 1. Since y = - 1 is negative, the ﬁnal solution is y = - p 2 x 2 / 3 + 1 . 2. (4 points) A colony of penguins is modeled by the diﬀerential equation dy dt = ky ± 1 - y K ² where y ( t ) is the biomass of penguins at time t (measured in years), the carrying capacity is estimated to be K = 60 kg, and k = . 05 per year. (a) If y (0) = 15 kg of penguins, estimate how many kg of penguins there will be 1 year later. (Hint: You can use that

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: y ( t ) = K/ (1 + Ae-kt ) is a solution to this equation for any A > 0.) We are given an initial condition so we can solve for A : y (0) = 15 = 60 1 + A 1 + A = 60 15 A = 4-1 = 3 Then y (1) = 60 1 + 3 e-. 05 . (b) What is the population of the penguins in the limit (as t goes to inﬁnity)? Taking the limit as t goes to inﬁnity, we have lim t →∞ 60 1 + 3 e-. 05 t = 60 3. (2 points) For each ﬁrst order diﬀerential equation below, state whether it is linear, separable, both, or neither. dy dx = yx + 5 y x 2 This one is both. Separable: dy/dx = y [( x +5) /x 2 ]. Linear: dy/dx-[( x +5) /x 2 ] y = 0. dy dx = y 2 + e x This one is neither....
View Full Document

## This note was uploaded on 03/25/2011 for the course MATH 1B taught by Professor Reshetiken during the Fall '08 term at Berkeley.

### Page1 / 2

quiz09_s107_solns - y t = K(1 Ae-kt is a solution to this...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online