Unformatted text preview: u = t, du = dt and dv = e t dt, v = e t , we obtain 2 Z te t dt = 2( te tZ e t dt ) = 2( te te t ) + C. The last step is to reverse the substitution: Z e √ x dx = 2 e √ x ( √ x1) + C. 3. (2 points) Use the identity cos 2 x = 1sin 2 x to get Z cos 3 xdx = Z (1sin 2 x ) cos xdx. Use substitution with u = sin x, du = cos xdx : Z (1sin 2 x ) cos xdx = Z (1u 2 ) du = uu 3 3 + C = sin x1 3 sin 3 x + C. 1...
View
Full Document
 Fall '08
 Reshetiken
 Math, Cos, dx

Click to edit the document details