physics_8pendulum_chart

physics_8pendulum_chart - C o lu m n 1 M +m (gm ) ab s. e...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: C o lu m n 1 M +m (gm ) ab s. e rro r i n M +m (gm ) m (gm ) ab s. e rro r i n m (gm ) L (cm ) ab s. e rro r i n L (cm ) Θ ( d e g) ab s. e rro r i n Θ (d e g) h % e rro r i n L co s( Θ +ab s) co s( Θ -ab s) ab s. e rro r i n co s θ % e rro r i n co s Θ % e rro r i n Lco s Θ ab s. e rro r i n Lco s Θ ab s. e rro r i n h % e rro r i n h V (cm / s) % e rro r i n V v (cm /s)2 % e rro r i n v3 ab s. e rro r i n v (cm /s) Bal l i s ti c Pe n d u l u m 312. 8 0. 1 67. 1 0. 1 28. 6 0. 2 27. 5 0. 5 3. 2 315 1% 0. 8 829 0. 8 910 0. 0 040 0. 5 % 1% 0. 2 926 0. 4 926 15% 79. 5 85 8% 371. 0 00 0. 0 3% 0. 1 186 Li g h te r Pe n d u l u m 262. 6 0. 1 67. 1 0. 1 27. 6 0. 2 34. 5 0. 5 4. 8 541 1% 0. 8 192 0. 8 290 0. 0 049 1% 1% 0. 3 012 0. 5 012 10% 97. 5 40 5% 381. 7 29 0. 0 4% 0. 1 454 Co l u m n 1 M +m (gm ) ab s. e rro r i n M +m (gm ) m (gm ) ab s. e rro r i n m (gm ) L (cm ) ab s. e rro r i n L (cm ) Θ ( d e g) ab s. e rro r i n Θ (d e g) h % e rro r i n L co s( Θ +ab s) co s( Θ -ab s) ab s. e rro r i n co s θ % e rro r i n co s Θ % e rro r i n Lco s Θ ab s. e rro r i n Lco s Θ ab s. e rro r i n h % e rro r i n h V (cm / s) % e rro r i n V v (cm /s)2 % e rro r i n v3 ab s. e rro r i n v (cm /s) Bal l i s ti c Pe n d u l u m 312. 8 0. 1 67. 1 0. 1 28. 6 0. 2 27. 5 0. 5 3. 2 315 1% 0. 8 829 0. 8 910 0. 0 040 0. 5 % 1% 0. 2 926 0. 4 926 15% 79. 5 85 8% 371. 0 00 0. 0 3% 0. 1 186 Li g h te r Pe n d u l u m 262. 6 0. 1 67. 1 0. 1 27. 6 0. 2 34. 5 0. 5 4. 8 541 1% 0. 8 192 0. 8 290 0. 0 049 1% 1% 0. 3 012 0. 5 012 10% 97. 5 40 5% 381. 7 29 0. 0 4% 0. 1 454 C o lu m n 1 M +m (gm ) ab s. e rro r i n M +m (gm ) m (gm ) a b s. e rro r i n m (gm ) L (cm ) a b s. e rro r i n L (cm ) Θ ( d e g) a b s. e rro r i n Θ (d e g) h % e rro r i n L co s( Θ +ab s) co s( Θ -ab s) ab s. e rro r i n co s θ % e rro r i n co s Θ % e rro r i n Lco s Θ ab s. e rro r i n Lco s Θ ab s. e rro r i n h % e rro r i n h V (cm /s) % e rro r i n V v (cm / s)2 % e rro r i n v3 ab s. e rro r i n v (cm /s) B al l i s ti c P e n d u l u m 312. 8 0. 1 67. 1 0. 1 28. 6 0 . 2 27. 5 0. 5 3. 2 3 15 1% 0. 8 829 0 . 8 910 0. 0 040 0. 5 % 1% 0. 2 926 0. 4 9 26 15 % 79. 5 85 8% 371. 0 00 0. 0 3% 0. 1 186 Li g h te r P e n d u l u m 262. 6 0. 1 67. 1 0. 1 27. 6 0 . 2 34. 5 0. 5 4. 8 5 41 1% 0. 8 192 0 . 8 290 0. 0 049 1% 1% 0. 3 012 0. 5 0 12 10 % 97. 5 40 5% 381. 7 29 0. 0 4% 0. 1 454 ...
View Full Document

This note was uploaded on 03/26/2011 for the course PHY 210 taught by Professor Mcdemus during the Spring '11 term at Lehigh Carbon CC.

Ask a homework question - tutors are online