# answer49 - 4901 a b c b b a 2 b 2 c 2 42< ab 9b 8c a b c...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 4901 a , b, c b b a 2 + b 2 + c 2 + 42 < ab + 9b + 8c a , b, c b a +b +c 2 2 2 + 42 b ab + 9b + 8c 2 a +b +c 2 2 2 2 + 43 ab + 9b + 8c a = 3, b = 6, c = 4 1 a- b 2 b + ] z ... 7 E ; @ ; @ E :u 0 ] + 3 4 ( b - 6) + ( c - 4) 2 = 0b 38y /* 12y /* a b c 31.6 a b c 4902 n y* b b b p 2 2.2 [2 1 4 :2 12 22 n2 1 1 1 + + ... + = p[ + + ... + ] 1 3 3 5 (2n - 1) (2n + 1) 1 3 3 5 (2n - 1) (2n + 1) p ' y n+1 2 p= 1.2 : 1 1 1 1 = ( - ) ( 2n - 1) ( 2n + 1) 2 2n - 1 2n + 1 = [( - ) + ( - ) + ... + ( : ]: p 1 2 1 1 3 1 3 1 5 1 1 p 1 1 np - )] = ( - )= 2 n - 1 2n + 1 2 1 2n + 1 2n + 1 n2 n2 1 1 1 1 1 1 = = [1 + ] = [1 + ( - )] 2 ( 2n - 1) ( 2n + 1) 4n - 1 4 ( 2n - 1) ( 2n + 1) 4 2 2n - 1 2 n + 1 1 1 2 1 1 3 1 4 1 1 2 3 1 5 1 4 1 1 1 - )] 2 2n - 1 2n + 1 = [1 + ( - )] + [1 + ( - )] + ... + [1 + ( = 4 [n + 2 ( 1 - 2n + 1 )] = 2( 2n + 1) 1 1 1 1 n( n + 1) [2 = [ = [ [2 : n2 1 n2 n2 = ( - ) ( 2n - 1) ( 2n + 1) 2 2n - 1 2n + 1 1 12 12 2 2 2 2 3 2 3 2 n2 n2 - + - + - + ... + - ] 2 1 3 3 5 5 7 2n - 1 2n + 1 n( n + 1) 1 n2 n 2 - ( n - 1) 2 1 12 2 2 - 12 3 2 - 2 2 n2 )] = + + + ... + - ] = [n - 2 2n + 1 2( 2n + 1) 2 1 3 5 2n - 1 2n + 1 : ( 2n - 1) ( 2n + 1) = 1 1 4 1 1 3 2 3 2 5 n2 1 (2 - 3 5 1 1 )( 2 + n ) n = 1 1 1 1 n n [ + ]= [ + ] 1 1 4 2- n 2+ n 4 2 n - 1 2n + 1 = [ + ( + ) + ( + ) + ... + ( n-1 n n + )+ ] 2n - 1 2n - 1 2n + 1 1 n 1 n n( n + 1) p p p 1p p = 4 [1 +p1 + 1 +p ... + 1 + 2n + 1 ] = 4 [n + 2n + 1 ] = 2( 2n + 1) np [2 2 1 : 1 1 1 1 1 = [ 1 3 + 3 5 + ... + ( 2n - 1) ( 2n + 1) ] +3 [ 3 5 + 5 7 + ... + ( 2n - 1) ( 2n + 1) ] + +5 [ 5 7 + 7 9 + ... + ( 2n - 1) ( 2n + 1) ] +...+ ( 2n - 1)[ ( 2n - 1) ( 2n + 1) ] = [( - = [n - [2 1 2 1 1 2 1 1 1 1 1 1 1 1 ) + 3( - ) + 5( - ) + ... + ( 2n - 1)( - )] 2n + 1 3 2n + 1 5 2n + 1 2n - 1 2n + 1 1 1 1 1 n( n + 1) 1 + 3 + 5 + ... + ( 2n - 1) 1 n2 ] = [n - ]= 2( 2n + 1) 2n + 1 2 2n + 1 : 1 2 2 3 n2 1 n( n + 1) n( n - 1) = [ - ] ( 2n - 1) ( 2n + 1) 2 2n + 1 2n - 1 6 5 2 3 n( n + 1) n( n + 1) n( n - 1) - )] = 2( 2n + 1) 2n + 1 2n - 1 [H L = [( - 0) + ( - ) + ... + ( ]: ^ (1)H L = 12 22 n2 + + ... + 1 3 3 5 ( 2n - 1) ( 2n + 1) = 2( 2n + 1) n( n + 1) [ (2)1.2 n=1 2 2.2 n=k HL * 3.2 n=k+1 2 [ 1 2 12 = 1 3 2 3 k ( k + 1) 12 22 k2 + + ... + = 2( 2k + 1) 1 3 3 5 ( 2k - 1) ( 2k + 1) ( k + 1) 2 12 22 k2 + + ... + ]+ 1 3 3 5 ( 2k - 1) ( 2k + 1) ( 2k + 1) ( 2k + 3) k ( k + 1) ( k + 1) 2 ( k + 1) + = [k ( 2k + 3) + 2( k + 1)] 2( 2k + 1) ( 2k + 1) ( 2k + 3) 2( 2k + 1) ( 2k + 3) = = 2( 2k + 1) ( 2k + 3) ( 2k + 1)( k + 2) = 2( 2k + 3) * E 9 ۸ 3.2 2 * n L L 1. 2 2. 2 3. B'@ >1~]+p;E 2 1. 2 2.E 9 `*2z]+8 9 @ E *L 3. L * 2 2 4903 12 L * E E 9 @ `*3z]+8 E E 9 @ `*4z]+8 2 * L * L *E 9 ` 2 E1.E; p9EP`м* 9 * 2. L 2 72 E; p * Y p 7 L E 9EP`м* 9 E 4@ @ 7[; * [ 72 32 62 12 12 22 A S *E 9 B ` C L CL / ( k + 1) ( k + 1)( k + 2) n( n + 1) np = 2( 2n + 1) 2n + 1 p= n + 1 2 p L *E 9 2 S 2@ E;@ E: S 13 6 +]z... 12 ܸ 13 2 L 2 2 X 2* L 2 6 +]z... 2 L 2 2 L 22 L 2 L 2* L 2 22 2 L 2 1111 6 + ] z ... A 2 B L * * B/ p6 Y C b 62 p;E 2 12 7 E ; @ E 9 xQ* + 4904 2 Ob Ab Bb Ob PQ b AP = BQ ` 9 E ; p + ] ~ 1 > 8Ƕ E 9 xQ* * ` P E 9 A B O 2 2 1.2 AO b 2.2 AB ƶ* 3.2 OQ b b AO = OA B A A AO = OA O b Q(2 Q ) PQ b Q' Q' 1 P O 2 Q A A'' O b Pb OP = OQ b b 1= 2 AOP A OQ (SAS 2 ) AP = AQ = BQ ض S X* E 9 b ض* * 8 * 916 ` R 4905 Ab Bb 11 913 * 2 * 82 914 (* Q 9 E 931 h* R 9 E 8 * 72 O pY* * 62 22 02 1 911 (* Q 9 E 816 h* R 9 E 2 (367367 + 762762)123123 ] * 2 717 7292 733 741 2 3674 3 367367 ] 212 2242 238 246 2 7624 2 762762 ] 1 2 3 4 762 3 3 3 92 3 7 3 1 2 1234 3 762 ] 9 367367 + 7627622 123123 3 4 7=49 ] ] 7[ @;E4 2 * * * * * ] Y pѼ*6 Y pѼ*6 Y pѼ*6 Y pѼ*6 76 ] 72 72 2 * 24 ] * 16 ] * 19 ] 62 12 02 32 3 4 7 ...
View Full Document

## This note was uploaded on 03/25/2011 for the course MATH 1232 taught by Professor Dr.jiangzhengchien during the Spring '11 term at Nanjing University.

Ask a homework question - tutors are online