This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: S UMMARY OF 9/10 L ECTURE Last time we discussed associativity as though it were a special property, but when does it fail? Here’s one example: what does 4 ÷ 2 ÷ 2 mean? Well, it could mean (4 ÷ 2) ÷ 2 = 1 , or it could mean 4 ÷ (2 ÷ 2) = 4 . The point is, the expression 4 ÷ 2 ÷ 2 is ambiguous; so, for example, ( Q × , ÷ ) is not a group, because associativity fails to hold. (There are other reasons it’s not a group, as well.) Next, we proved that any group has a unique identity element (hence, we talk about the identity) and that every element has a unique inverse. Of our three examples of groups so far, recall that example (v) was a bit different from the other two: f ◦ g 6 = g ◦ f in general. However, for some choices of f and g the two expressions are equal; for example, 1 commutes with every element f ∈ A ( S ) . More generally, given a group ( G, @ ) , we say two elements a,b ∈ G commute if a @ b = b @ a . If every element of G commutes with every other element, then we call...
View
Full
Document
This note was uploaded on 03/26/2011 for the course MAT 301 taught by Professor Gideonmaschler during the Fall '10 term at University of Toronto.
 Fall '10
 GideonMaschler

Click to edit the document details