This preview shows page 1. Sign up to view the full content.
Unformatted text preview: (a) {( x , y )  z ( z 0 x + z = y )} (b) {( x , y )  z ( z 0 xz = y )} (c) {( x , y )  z ( z 1 x + z = y )} (d) {( x , y )  z ( z 1 x * z = y )} (e) {( x , y )  z ( z 1 x / z = y )} (e) {( x , y )  x = y x + 1 = y } (f) {( x , y )  x = y x + 1 y } (g) {( x , y )  x = y x + 1 < y } Exercise 5.5 Haskell (a) Work through the Learn Haskell in 10 minutes tutorial linked from the course page. (b) Modify the le RelTest.pdf from RATH1FC.zip (see Exercise 4.5) by adding a function testRel that takes a relation r as argument and prints messages reporting whether r is symmetric, antisymmentric, transitive, (locally) reexive. (c) Also add a function that generates (preferably a suitable generalisation of) the isPrefxOF relation from Exercise 5.3(d)....
View Full
Document
 Spring '11
 kahl

Click to edit the document details