# Limites - 1. l m x sin x x =0 1 1 Como 1 &lt; sin x &lt; 1...

This preview shows pages 1–2. Sign up to view the full content.

1. ım x →∞ sin x x = 0 Como - 1 < sin x < 1 para todo x, luego - 1 x < sin x x < 1 x para x 6 = 0 . Puesto que l´ ım x →∞ - 1 x = l´ ım x →∞ - 1 x = 0, y del teo del sanduche podemos concluir que ım x →∞ sin x x = 0 2. ım x 0 1 - cos x x = l´ ım x 0 (1 - cos x )(1 + cos x ) x (1 + cos x ) = l´ ım x 0 sin 2 x x (1 + cos x ) = l´ ım x 0 sin x x ım x 0 sin x 1 - cos x = 1 · 0 = 0 3. ım x 0 tan x x = l´ ım x 0 sin x x (cos x ) = l´ ım x 0 sin x x ım x 0 1 cos x = 1 · 1 = 1 4. ım x 0 ln(1 + x ) x = l´ ım x 0 ln(1 + x ) 1 x = ln l´ ım x 0 (1 + x ) 1 x = ln e = 1 5. Sea: α = e x - 1 α + 1 = e x ln( α + 1) = x Si x 0 , α 0 Asi:

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 03/27/2011 for the course MATHEMATIC 504 taught by Professor Carlostrujillo during the Winter '09 term at Buena Vista.

### Page1 / 2

Limites - 1. l m x sin x x =0 1 1 Como 1 &lt; sin x &lt; 1...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online