Limites - 1. l m x sin x x =0 1 1 Como 1 < sin x < 1...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
1. ım x →∞ sin x x = 0 Como - 1 < sin x < 1 para todo x, luego - 1 x < sin x x < 1 x para x 6 = 0 . Puesto que l´ ım x →∞ - 1 x = l´ ım x →∞ - 1 x = 0, y del teo del sanduche podemos concluir que ım x →∞ sin x x = 0 2. ım x 0 1 - cos x x = l´ ım x 0 (1 - cos x )(1 + cos x ) x (1 + cos x ) = l´ ım x 0 sin 2 x x (1 + cos x ) = l´ ım x 0 sin x x ım x 0 sin x 1 - cos x = 1 · 0 = 0 3. ım x 0 tan x x = l´ ım x 0 sin x x (cos x ) = l´ ım x 0 sin x x ım x 0 1 cos x = 1 · 1 = 1 4. ım x 0 ln(1 + x ) x = l´ ım x 0 ln(1 + x ) 1 x = ln l´ ım x 0 (1 + x ) 1 x = ln e = 1 5. Sea: α = e x - 1 α + 1 = e x ln( α + 1) = x Si x 0 , α 0 Asi:
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 03/27/2011 for the course MATHEMATIC 504 taught by Professor Carlostrujillo during the Winter '09 term at Buena Vista.

Page1 / 2

Limites - 1. l m x sin x x =0 1 1 Como 1 &lt; sin x &lt; 1...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online