cut2 - sum {j in PATTERNS} nbr[i,j] * Cut[j] >=...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
problem Cutting_Opt; # ---------------------------------------- # param nPAT integer >= 0, default 0; param roll_width; p set PATTERNS = 1. .nPAT; set WIDTHS; s param orders {WIDTHS} > 0; param nbr {WIDTHS,PATTERNS} integer >= 0; p check {j in PATTERNS}: sum {i in WIDTHS} i * nbr[i,j] <= roll_width; var Cut {PATTERNS} integer >= 0; v minimize Number: sum {j in PATTERNS} Cut[j]; m subject to Fill {i in WIDTHS}:
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: sum {j in PATTERNS} nbr[i,j] * Cut[j] >= orders[i]; problem Pattern_Gen; # ----------------------------------------# param price {WIDTHS} default 0; p var Use {WIDTHS} integer >= 0; v minimize Reduced_Cost: 1 - sum {i in WIDTHS} price[i] * Use[i]; subject to Width_Limit: sum {i in WIDTHS} i * Use[i] <= roll_width;...
View Full Document

This note was uploaded on 04/01/2011 for the course CO 370 taught by Professor Henry during the Winter '11 term at Waterloo.

Ask a homework question - tutors are online