Arranjaments - ARRANJAMENTS Vera Sacristn a Geometria...

Info icon This preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Vera Sacrist´ an Geometria Computacional Facultat d’Inform` atica de Barcelona Universitat Polit` ecnica de Catalunya ARRANJAMENTS
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
ARRANJAMENTS Geometria Computacional, Facultat d’Inform` atica de Barcelona, UPC Sigui R = { r 1 , . . . , r n } un con- junt finit de rectes del pla. DEFINICI ´ O
Image of page 2
ARRANJAMENTS Geometria Computacional, Facultat d’Inform` atica de Barcelona, UPC Sigui R = { r 1 , . . . , r n } un con- junt finit de rectes del pla. DEFINICI ´ O L’ arranjament A ( R ) ´ es la des- composici´ o del pla en cares , arestes i v` ertexs indu¨ ıda per R .
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
ARRANJAMENTS Geometria Computacional, Facultat d’Inform` atica de Barcelona, UPC Sigui R = { r 1 , . . . , r n } un con- junt finit de rectes del pla. DEFINICI ´ O L’ arranjament A ( R ) ´ es la des- composici´ o del pla en cares , arestes i v` ertexs indu¨ ıda per R . L’arranjament A ( R ) s’anome- na simple si R no cont´ e dues rectes paral . leles ni cont´ e tres rectes que passin per un mateix punt.
Image of page 4
ARRANJAMENTS Geometria Computacional, Facultat d’Inform` atica de Barcelona, UPC COMPLEXITAT La complexitat (combinat` oria) d’un arranjament A ( R ) ´ es el nombre de cares, arestes i v` ertexs de l’arranjament. La complexitat d’ A ( R ) ´ es O ( n 2 ) , on n = # R . Concre- tament: v n ( n - 1) 2 a n 2 c n 2 2 + n 2 + 1 Aquestes fites s’assoleixen quan l’arranjament ´ es simple.
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
ARRANJAMENTS Geometria Computacional, Facultat d’Inform` atica de Barcelona, UPC COMPLEXITAT La complexitat (combinat` oria) d’un arranjament A ( R ) ´ es el nombre de cares, arestes i v` ertexs de l’arranjament. La complexitat d’ A ( R ) ´ es O ( n 2 ) , on n = # R . Concre- tament: v n ( n - 1) 2 a n 2 c n 2 2 + n 2 + 1 Aquestes fites s’assoleixen quan l’arranjament ´ es simple. n = 5
Image of page 6
ARRANJAMENTS Geometria Computacional, Facultat d’Inform` atica de Barcelona, UPC COMPLEXITAT La complexitat (combinat` oria) d’un arranjament A ( R ) ´ es el nombre de cares, arestes i v` ertexs de l’arranjament. La complexitat d’ A ( R ) ´ es O ( n 2 ) , on n = # R . Concre- tament: v n ( n - 1) 2 a n 2 c n 2 2 + n 2 + 1 Aquestes fites s’assoleixen quan l’arranjament ´ es simple. v = 10 n = 5
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
ARRANJAMENTS Geometria Computacional, Facultat d’Inform` atica de Barcelona, UPC COMPLEXITAT La complexitat (combinat` oria) d’un arranjament A ( R ) ´ es el nombre de cares, arestes i v` ertexs de l’arranjament. La complexitat d’ A ( R ) ´ es O ( n 2 ) , on n = # R . Concre- tament: v n ( n - 1) 2 a n 2 c n 2 2 + n 2 + 1 Aquestes fites s’assoleixen quan l’arranjament ´ es simple. v = 10 a = 25 n = 5
Image of page 8
ARRANJAMENTS Geometria Computacional, Facultat d’Inform` atica de Barcelona, UPC COMPLEXITAT La complexitat (combinat` oria) d’un arranjament A ( R ) ´ es el nombre de cares, arestes i v` ertexs de l’arranjament. La complexitat d’ A ( R ) ´ es O ( n 2 ) , on n = # R . Concre- tament: v n ( n - 1) 2 a n 2 c n 2 2 + n 2 + 1 Aquestes fites s’assoleixen quan l’arranjament ´ es simple.
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern