{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Calculus II Notes 16.2

# Calculus II Notes 16.2 - Calculus II Stewart Dr Berg Spring...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Calculus II- Stewart Dr. Berg Spring 2010 Page 1 16.2 16.2 Iterated Integrals If we integrate a function f ( x , y ) with respect to y (treating x as a constant), we get a function of x : A ( x ) = f ( x , y ) c d ∫ dy . If we integrate A ( x ) = f ( x , y ) c d ∫ dy with respect to x , we get an iterated integral : A ( x ) a b ∫ dx = f ( x , y ) c d ∫ dy ( ) a b ∫ dx . Is f ( x , y ) c d ∫ dy ( ) a b ∫ dx = f ( x , y ) a b ∫ dx ( ) c d ∫ dy ? Example A Find the integral of f ( x , y ) = x 2 − xy over the rectangle R = [0,2] × [0,2] in both orders. Solution : x 2 − xy ( ) 2 ∫ 2 ∫ dx dy = x 3 3 − x 2 y 2 2 ∫ 2 dy = 2 3 3 − 2 2 y 2 − 2 ∫ 2 dy = 8 3 − 2 y 2 ∫ dy = 8 3 y − y 2 2 = 16 3 − 4 = 4 3 . Also x 2 − xy ( ) 2 ∫ 2 ∫ dy dx = x 2 y − xy 2 2 2 ∫ 2 dx = 2 x 2 − 2 x ( ) 2 ∫ dx = 2 x 3 3 −...
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

Calculus II Notes 16.2 - Calculus II Stewart Dr Berg Spring...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online