380 test 1 key short

380 test 1 key short - Exam 1-Winter 2010 Economics 380 R....

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Exam 1-Winter 2010 Economics 380 R. Pope Name Sits-4%.--. Throughout, the notation is as we have used in class: EJ‘is a utility function, x and y are two goods with respective prices, p)( and by, and l is income. Show your work. Total: 140 points (listed beside each question). (5) 1. List and explain 3 main axioms that are used to obtain a utility function representation of preferences: 1- 4:0“; w Era as!» ewe. Q; Vt’l‘i‘irtu .2.” FM“; I? ‘3‘“ 5 mama-Mia 1‘9“ ., M ‘ .‘ lzmgfit («gfism E» 2")“ )- 8» z... 3* . .. «my». .jésm kgfifi/‘ufinnfiinflcw WQMAWV‘ J “a: (15) 25) Explain the meaning of the marginal rate of substitution (MRS). b) Does the utility function lJ(x,y)=y+6ln(x) have diminishing MRS (y on the vertical axis). c) Why does diminishing . - MRS hold special interest? ’ ‘ 1: .n’ -.-' .‘ . a" A w. , .. . .,,...:2,,. .v r {5.1 . 1" i. , M", .' ’ w " -.' r) sit/ciaflgsim {fat-,WEammteesmfl 5,» I. g . . ' ‘ fig on Hfisfitaflwtfitswamp. a; t t“ Jg fiUQQw'thgémwwkaamfiféfiw ' “ N (10)3. fibn is in'sc’ ofofi work. His job allows fi'e’xible hours and he is paid $9 per hour. Write his wéekly budget . constraint between leisure (x) and goods (y) in the form that economists prefer. «fill—l; llas 0” y 40 iiiér WEEK thagfghe can dividinbgtwleen'leisure anti-‘55g “*4 twat»ch all a 3.. L54" Mm»an mrwfiteé} ¢ I t v, “m k s a L4! .53: cl 3; t1 5} fit 4) E . M . ' Irma ‘ menflg‘ k hgfigdgfirg -- - - has: i V 7 w : er s” - . ’ K} g . I _ H. I. r) ' _ . x CT 7 . its"? «Maid- i. _ .. (15) 4: Explain why the following utility ngtion's represents or does not represent the same I. preference ordering: (x, y) = xay” ; -U(JE, yj --—5"1'0'+ a1n(x) + ,6 1n( y) ? ‘ ’mllg‘sm "3 ii leis/M M3552; = aw): 3/9/33: 0’ let/fix, fijwflgafim is. . ‘ _ Matti team alt...) «ii—4%. <l> It“ New? s Wage; aw mafia“ '- ’ ‘ ' aw»; Fig.1.! ‘.- m’w’é , -./. . ' . .3 v . (35) 5. If Sally s FuMllty function for transportation (y) and fitness (x) is U(x.,.y.)—= 1l(x:—10)y and the budget constraint is left: general: pxx+ pyy S I ' (5) 3. Using Lagrange’s method, write the Lagrangian for this problem. Xvi I: (meagié: 5-f-‘RKEM {3x X’figsxér W W 3??" b. Write the first order conditions. 2:; a Miter/93W 5 will, it .. S, a“); .9139 a? "Fa . (S) c. After eliminating the multiplier (x7. ), what are the two equations which must be solved togetdefihzsz 2; . V .1 3 gr} (10) d. Explain the meaning of one of the first order conditions in terms of marginal cost and marginal benefit of consumption of x. :9. : MRSCMSKUWD-mmflfifia Mm. ’ ' - i. . , . AK. __ _:, i?- ty I 5 We I? ’4’ \~ E 14‘; W"£~§J~$~w M -- W M C" \Ea -Mas§;m Awwr mm =21 Wfllgx >Mg§za «9/0 WAQX , 7% B MRsfi-Mfig 4‘ mag/y £3? * 'Q. _MCD%WX. g '17ng fit c, mbwmgxzm, :3}; m . zip: ,.-mxX-‘?’£)rm3:~ml #5 .?A>‘lpt&¢ x“ (a 5 _ I _. (Ewing/a? ; Kt) w :2 [1 @lgcy‘gfig f (25) 6. Maximization utility U = xryw gives rise to demand function: (10) e. Calculate the demand functions fortrans ortation and itn’ess. X PX X w; x*=;/—{~, Px (10) a. What is the income elasticity ofdemand? Is this goodnormai? $X1l: 75’ ‘ Eye, 2:“: I. 2/ z: $wa'fi 'w .~ 75" 7 W‘ ’7'; TS“ “gs-Fat? fiafllfi A 731: x . >4 a “6’ - ' ‘ -" . - . P)! g, f fiflwgg-fimj; magma? . WW” ,. w- la ' 1:: :3“ iii) a” -- I; * (5) b. Would this dem nd function generate a reasonable ngel curve for food? Explaifi; E . 'l I. V‘ I N83 '9'; ' view“? voxmgtw 5w ‘32, w: :5; A i t. wig éwmm ‘ " ‘- " '5‘” x . E YL at [/\k 0 ' we (10) c. What is the own—price elasticity of demand? (write the definition and the result). Does this good satisfy the "law of demand”? ,~ . ‘ a - 5 it .3” m” X 1:; gal}: W655i: rm lg :3 fixm. "f"wg,~fi<%:z: fit: I . (10) 7. If the’second demand function in 6. is y* = (1—y)—, what is the form and m : hing of . a ' 29,, the indirect utility function? , . " J r» " . 3" “gauuarwgfifima we?) Wfifiié} . .-< . I ’ I ' I (10) 8. Thinking of homogeneity, would the "demand function” ln(x*) = 3px /py +21 be a reasonable form if deri d frm Utility mainlization subject to a budget constraint? Explain. Magi/- “a . ~ to . , - , .- Q i ‘ _l ‘3 Kai» ' W? L“? unca5 (15) 9. John utili ti4.-n is of the form U(x,y)=min('x/2,y/3). ‘ any given level of utility U, say U=100, what will it costJohn to attain that utility with prices px and py? lefizfl’ ' i szl, Pt}le a3 at E ;fiu5®+3m;7m Wt a“ ~~ W "3 gnaw X .t at. :5; in.” “3w 5» .w M‘ J mum-0‘ 49".: ' . < ~- fi _MMM|H»H,H‘anm$mefl§;!:§l 6 x» "*1- ‘ I "> XV-wamjri)? 7‘73qu 2 ‘ U 7px If: a Wig") 7”" , ' : \'. ‘ If” ‘- r o yaw MW» fivw’U-ffifl (wwmf vufiwrswmflflfwyfmfiw t ...
View Full Document

This note was uploaded on 04/07/2011 for the course ECON 380 taught by Professor Showalter,m during the Winter '08 term at BYU.

Page1 / 7

380 test 1 key short - Exam 1-Winter 2010 Economics 380 R....

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online