This preview shows page 1. Sign up to view the full content.
Unformatted text preview: WORKSHEET 34  Fall 1995 1. Sketch the finite area whose boundary is composed of pieces of the curves x = 1 y 4 and x = y 2 1. a) Find the area of this region by integrating with respect to y . b) Find the area of this region by integrating with respect to x . 2. Sketch the region of the xyplane bounded by the positive xaxis, the positive yaxis, and the curve y = 4 x 2 . Consider the solids obtained by revolving this region around: a) the xaxis; b) the yaxis; c) the line x = 1; d) the line x = 2; e) the line y = 1; f) the line y = 4. For each of these six solids set up two integrals for the volume, one in x , that is integrating dx , and one in y , that is, integrating dy . For each integral state whether it represents the shell, disc, or washer method. Example for ??: Z 2 (4 x 2 ) 2 dx, disc method Z 4 2 y p 4 y dy, shell method 3. Suppose you have a tent which is supported by two flexible aluminum poles which run along the ceiling3....
View
Full
Document
 Spring '08
 Grether

Click to edit the document details