winter_2009_2

# winter_2009_2 - MCV4U CALCULUS AND VECTORS TEST Chapter 1...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MCV4U, CALCULUS AND VECTORS TEST Chapter 1 LIMITS Teacher: Teodoru Gugoiu 1. The function f is defined by the graph represented in the right ﬁgure. Find: [3] 3) lim f(x) = «L x-->0 b) limi f(x) ii x—>—3 x—>2Jr d) \LL= an?) 5'" 5 “Es K-a mt QJVUL 5%“) m B 75’???) mu} £442.) 1:: 755—? " b 2. The function f is deﬁned by the graph represented in the above ﬁgure. Analyse the continuity (continuous. discontinuous, type of discontinuity) of the function f at each number specified below. {3] a)at x=—1 brLb-Ccyﬁ') z: 1‘) 90“» in") :2, ‘> :1 C-D “a dgihumck. ﬁ—a ——i' ~'—>—i+ \ o“ 9 is no". coU'i‘W-‘ﬁ'e L Ni if 1' mi (1"“"“i:*‘ b) at x :0 -. Sum. ﬁm r: 1'; Li (cu-d ‘; :. X i s chased-i Wow 5" “ KW‘W-m mic ) x~>o " ’ (3)3t 95:4 94‘” {if} 1» .h .i y“; 7.. 1. u; at in, nominations an y .- "am yrs —'2 3. Consider the piecewise defined function [3] x+], x<—1 f(x): x2, —1\$x\$1 J}, 3: >1 Find: 3) limlﬂx) Muh- Cy‘} 2:. ——l+'i 70 |_) Um lira!) -.:_(_\37 3‘ a) :. K.)ka HF} x—>- ¥h>w\_ {v3 ‘ b)limf(x) -.::.. 0'1 ‘:-'-O .x—->0 \f‘f:\' ' KN 'f‘ﬂ 7“ ’1': l ‘ ‘(V’A' '5:- .0 c) limf(x) mm. it!) = t \) KM}: j ) ) if) xal {n} r- _ f " i 4. Consider the piecewise deﬁned function. Analyse the continuity of this function. [3] x2 -2, x<—2 Act V: -L i 1 WM ' r. — — 7 2 I - .. _ — 1'; ('2 f(::)— x, ZSxSO my (1:0 = (a) #1. =1, )Mmi‘w) , L n z ) \ Vl+x, x>0 :. ii: ukkuuous at V's-L 2.1.0 “UL- Q’C7l3: —-D:D) MW q {-t > {6‘5 0" 1 ~‘> 0* ' at it: mt muiiwiius aft ‘f'rc Limit?) ("03) 63 0h. (.0) 0°) 0‘ Q n is CBwHVkUUuS‘ on. Page 1 of 4 5. Given iim f (x) = 2 and ling g(x) = —4, use the limits laws to evaiuate: [3} x—> x92 [118)1hn[f(x)+g(x)] s in» the s 9w» ﬁn) —_ 1 “an “L H2 #31 f-r'z, ~ i [11biiianiif(x)/g(x)] a M s. 1}“; -.~ — LL hm Cu Cr“) ,L-V'L .. a = G 8:“? [1]c) lin;[3f(x)—2g(x)] :3 513m 4M5 ﬂ), m an) =35 (a 2 L Q r \$1.31 “"1. 6. Find each limit. [6] 2 _ r _ ‘ ’ a) limx 4 =2 Mu». We}: 50m. CAI-13 1—1-7 :"‘L" H72 x+2 ‘0’.) iii-Ff, fag} / i .M .4 W \ ,, w {3) lim x } ___ SUM ._._ wt. .._.__.—- \ ._ .L _ — 'f :1... ‘ I c)lim‘/;2:M\M_W 2' ‘W Z=Uu~ A?) \ﬁr-t'). H" "’4 “4 pm X—‘t Wei PM (Vt/{0 0’7 ' *9” 7. Redefine the function f to remove the discontinuity and to make it continuous at any number. [3] _x3+] i ifs-kt ( 1w)! *1.) W x“ i 9‘": 7271' WWS "" m w on m «r we =5 x—>-\ Y” {-04 . x5+i 1’. ‘A‘ﬂ: - M" 3 H4 '5 ) Y"'i 8. Find the value of the parameter a such that the function f is continuous atany number. [3] f() 2x2—ax, x<l x : a+v‘x~1, x21 hm} it?!) :7 (Lu (1‘ #13:} P; rants... 1:) 1120 “"3 0‘ ‘5“ ’L. ..- L” kgﬁimx 2’ 3 3‘ i HUT-1 3 r79! ,. ‘ m\$;:\ ° .3 is Qnu‘hwaug ad (13:3 \AUtquH‘ A Page 2 of 4 9. Consider the function [5] ~1 f(x)="‘—_ x+1 [1} a) Find the average rate of change over the interval [1,3] ‘ l “"4 > "31:0 am "2-0 \ .-.'-" x,1> rb-\ I“! 2_g‘:—;‘:“""-"*'; :‘A?( "l’ 2*— _) BIT—ﬂb*‘:. and”; Y}, [3] b) Find the instantaneous rate of change at x = 0 in wire 31:) I . . '2. ‘3‘. zLWJL. ) ) = 1"” +E _, Um... yﬁ- Y-{V "‘ \JW 7") 0 7t” 0 FM: X W gum Cf“) 7‘ 73>” x p; :, \EC-r- 5L [1] c) Find the equation of the tangent line at P(0,—1) W = 2. A. - : K —\ s— or): 9.0—0) 12 .- “‘3 9* 10. An fireworks is launched verticain upward. Its position is described by the position function [4] 12(1) = 201—:3 (where Mr) is the altitude in meters at the time t in seconds). Find: 44'“ 5 ht'=~Q-0*l=~l‘3 *1" 1° ‘3 V2. re 10 DJ “3"” a 60* Tilt-35 1% [1] a) The average velocity over the interval [1,3] \ AD MIA” 3);. \5 E: t .1“ '2, c=—-—- "Kris '5“ M? c '1 4' [3] b) The instantaneous velocity at the moment t = 2 hug—ht?) «Lg-\w-{bw (ago-1’13) \QC‘F‘ Wm... M Hz «'1' ks; JUL 11. Use technology (scientific calculator) to estimate the instantaneous rate of change at a :1 for the function f(x) =tlzx2 4; using 0:001, 0.0001, and0.000001. CL»=‘ ‘5 im "‘ [3] 3 lam-oi ‘) my 4&*“ﬁ 0. L\.m‘- m '“‘ t \ Qoz’) . __ W 3 I o M 0.1x 'b “7.0.009! SO“°‘)1" JMQOD‘ “ 1: \‘\ 3 \A'l'b 00000:; {H ,._.. ﬁ'l. U-oooom)‘ “\jwmw 4‘ .- 03. mm“ o - about :. \Rc': nos) 12. Find the slope of the tangent line to the graph of the curve [3] f00=x+3 x at the generic point P(a, f(a)). 2 K I» \ \ + —" '— 0c"? "H " “"2; x—m. tr 0 w )L— a» " x—~ in—>-— PM 160-— lb?!» —\ guita- okij ‘40-. a x 0‘ M = t— 2:. (11 13. Evaluate the limit [3] 5—1 W.» x... L id)...- x I 3‘ f7“ -.-_ Shunt, \ L: :0 - w ._..- ------ w - n »-> " ‘5 in}; m 0430:} Kim-‘30 P" Mi \rﬂL " x 1 y~t :19“ [in ——"'""‘ Eu (>64) Lic‘wjret)..,_wmm : 01m, “H”! ‘ Q4“— ‘tﬁg—j‘ L 7")! Pa"; = \M. " 1 “ l\( 3 ) ﬂ__>‘ itwiA'a.) gun-t \ #- L—P‘It X (“H 1 Fr; 1 P a, yd\ \ltér‘rb‘lfbgy) U5‘q 2 #:5- 5—4 "5 www ' r ’2“ \ Pb bug int-‘— wg. ""‘ "' w" . U”) 1. n . ‘1‘“ L 1 or» l- UL 7 “’5‘ Li . . ‘5‘" K __ “.13.. o n W “gm-n " '2‘ ...
View Full Document

## This note was uploaded on 04/11/2011 for the course MATH 1400 taught by Professor Grether during the Fall '08 term at North Texas.

### Page1 / 4

winter_2009_2 - MCV4U CALCULUS AND VECTORS TEST Chapter 1...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online