alg2_ch9arev_sol

alg2_ch9arev_sol - Chapter 9 Part 1 Review Non-Calculator...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Chapter 9 Part 1 Review Non-Calculator Determine if the folloWing is a polynomial or not. K it is, put it in standard form and give the degree; If it is not, explain why not. 1.) ~5x2~7x5+8+3x4 2.) 15x+4flx3l—x’ it No ' Add or Subtract. Write your answers in standard form. 3.) (3x3 +2x2 —4x+1)+(-6x3 +11x+6) _ 4.) (8—x—6x2 +x3 +7x4)—~(3+2x~5x3 +4x4) m {a ' We"? +::::§:%:WW WWWWW {E‘th 9*” Multiply or Divide 5.) (2x2 —4x+1)(2x§3) _ 6.) (—4x3 +2x—9)(5x2 ~3x+ 7) £71ng ézgwwfi 6x14» (2.x s23: “13 wgoxg’flzx‘t’ emgflx gt» (0)43». éyzi/‘ix 95f Fatifiiitrg » 43c3 ——8x2 ~17x+5 7)—-———————————————— :WmE igjfiéflfi as» ye Zfiwg Llfigr 8243mm g a. 5m a fig?” (033“) @kal’ix “(3%ng ' n. ” miz?+§ WW “:2 Use synthetic substitution to evaluate the given polynomial for x = «2. 9.) 6x4 —3x3 -22x2 w5x+6 “A (g $3 $229 «as? @- »(29 5C) “lQME, V WWWaM a (9 egg 8 “3" 10.) x4 ~3x2 +11x—9 I G M 3? n F- g? e 2. 4i 7 “‘27 “"8 afimwjzfl V I a Give the end behavior of each polynomial, using infinity notation. Then, state the [MAXIM UM number of turning points it could have. e 3a 11.) f(x)={::33+11x4 wa +50 Q3 fifiwr W m ca WM £15636 {mink “3‘1 5” Find the solutions for each function. 13.) f(x) = 3(x + 4)(2x — 7)(x — 9) 15.) W as nee-m fig}? 046’ 7&0?) 6"? “w mg {drag “aided? @M‘ifi “1 L‘l _ 14.) f(x) : 4(x + 9)(x + 3)(4x ~ 8) 16.) ~‘ L. l i ) i in w 4 a .1 1 E i | Notice the x—scale is 0.5 and the y-scale is 2 i3; gt we) (x “25m (gee 5 a; &(1+3‘)wa2‘)03 5 :1 QCL‘OC‘QO? em%& aged Calculator Allowed Graph the polynomial to find all local minimums and local maximums. Then, give the domain and range. 1.) f(x)=—~2x6+10x3~7x+3 2.) f(x):—x5+6x3—5x~3 LQQQWM: $3230 § @220 ‘ I Lcfli ‘ ~ g in“ (3 mm Wat/7m. gjffi fi‘s‘qg Wflioomg T@WM Ra , imm§ ~emz fix Domini ‘ I ‘ geezzo flaw? if Me: @a For each of the following fimctions, find all solutionssfreakamizémgi‘nary}. Justify your answers with synthetic division, factoring, or the quadratic formula. Identify any double zeros by writing double in your answer. 3)%efiee%e+&au Egg e%:§§§§a ék3fl3m2%2§x+ll Wafifi~w»fi&»yg_ Tr % “l a a t 93‘ my ‘ Eli “2g” Wig“ sawewweWma , w e% 9 U WWW» e 7 Li CECE} H l Eye. 6” 75‘ M g ,3: Q ' ~18 “ m7 Zr Eff: 2 \ 3: Mi iqu) flag) ’7” 5 gm» fiWn .33 Mg E *3 C C 4-) f(x)=2x3 +352 _13x+6 361/0 “gm 4&me 2w locks Kim; K; WK “3; 21 i «as fie W e iii-“(e e "g aatasu W 2,3336% ‘5’ 2.: 3:“ Q Xfiy; gr KHZ}, ...
View Full Document

This note was uploaded on 04/11/2011 for the course MATH 1100 taught by Professor Staff during the Spring '08 term at North Texas.

Page1 / 3

alg2_ch9arev_sol - Chapter 9 Part 1 Review Non-Calculator...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online