EAS 209 – Spring 2011
Instructor: Human
1/18/2011
1
02FDB/Normal Stress/Shear Stress
Lecture 2  Concept of Stress
•
Study of mechanics of materials provides future
engineers with the means of analyzing and designing
various machines and load bearing structures.
•
Both the analysis and design of a given structure
involve the determination of
stresses
and
deformations
.
Chapter 1 is devoted to the concept
of stress.
Today’s Objectives:
Review concepts of equilibrium learned in Statics
•
Free Body Diagram (FBD)
•
Force triangles
Understand concept of normal stress (
σ
) and
shear stress (
τ
)
Calculate normal stress in bars
Calculate shear and bearing stresses in bolted
connections
Today’s Homework
EAS 209 – Spring 2011
Instructor: Human
1/18/2011
2
02FDB/Normal Stress/Shear Stress
Review of Equilibrium
The structure below consists of a boom and rod joined
by pins (zero moment connections)
Construct FreeBody Diagram:
Detach the structure
from supports and apply the loads and reaction forces.
Solve for reactions
: four
unknown forces, three equations
of equilibrium
The structure is not statically
indeterminate because both AB
and BC are twoforce members
This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentEAS 209 – Spring 2011
Instructor: Human
1/18/2011
3
02FDB/Normal Stress/Shear Stress
Definition
twoforce member:
a member that has pins
or hinge supports at both ends and carries no load in
between
.
For a twoforce member the internal force is
directed along the member.
If we recognize that both the rod and boom are twoforce
members, we can solve for
F
AB
and
F
BC
by considering
equilibrium at joint B
F
AB
=40 kN (compression)
F
BC
=50 kN (tension)
0
30kN
45
3
40kN
50kN
B
BC
AB
AB
BC
F
F
F
FF
Sign convention:
Tension is +ve (force points away from the joint)
Compression is –ve (force points towards the joint)
For the joint to be
in equilibrium, the
force triangle
must close
EAS 209 – Spring 2011
Instructor: Human
1/18/2011
4
02FDB/Normal Stress/Shear Stress
Note:
you can
use force triangle whenever you know the
orientation of all three forces, and the magnitude of one.
This is the end of the preview.
Sign up
to
access the rest of the document.
 Spring '08
 Force, Stress, 02FDB/Normal Stress/Shear, 02FDB/Normal Stress/Shear Stress

Click to edit the document details