2004test2 - M346 Second Midterm Exam, November 9, 2004 22 ....

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: M346 Second Midterm Exam, November 9, 2004 22 . 1. Let A = 13 a) Find the eigenvalues and eigenvectors of A. b) Write down the most general solution to the difference equation x(n) = Ax(n − 1). c) Find x(n) when x(0) = (7, 1)T . 3 2 2. Let A = and consider the differential equation dx = Ax. dt −5 −4 a) Find the eigenvalues and eigenvectors of A. b) How many stable modes are there, and what are they? How many unstable modes are there and what are they? How many neutrally stable modes are there and what are they? What is the dominant mode? √ c) If x(0) = (π, 17)T , find the limit, as t → ∞, of x1 (t)/x2 (t). 3. Consider the NONLINEAR system of differential equations dx1 = 2(x2 − 1) 2 dt dx2 = (x2 − 1)/2 1 dt a) Find the fixed points (there are four of them). b) For each fixed point, approximate the deviations from that fixed point by a linear system of equations. c) Which fixed points are stable? Unstable? Borderline? 4. In R3 , with the usual inner product, consider the vectors b1 = (1, 2, 2)T , b2 = (4, 4, 3)T , b3 = (2, 9, −1)T . a) Use the Gram-Schmidt process to convert this basis for R3 into an orthogonal basis for R3 . b) If v = (5, 2, 9)T , compute Pb1 v. 5. On R3 , let b1 = (3, 4, 5)T , b2 = (5, −10, 5)T , b3 = (7, 1, −5)T . Note that these vectors are orthogonal. Let v = (2, 1, 2)T . a) Write v as a linear combination of b1 , b2 , and b3 . b) Let M be a matrix with eigenvalues λ1 = 5, λ2 = 3, λ3 = 15 and eigenvectors b1 , b2 , and b3 . Compute M v. 1 ...
View Full Document

Ask a homework question - tutors are online