This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: M346 Third Midterm Exam Solutions, November 20, 2009 1) Gram Schmidt: a)(10 points) On R 3 with the usual inner product, Use GramSchmidt to convert x 1 = (1 , 2 , 0) T , x 2 = (3 , 1 , 1) T , x 3 = (4 , 3 , − 5) T to an orthogonal basis. y 1 = x 1 = 1 2 y 2 = x 2 − ( y 1  x 2 ) ( y 1  y 1 ) y 1 = 3 1 1 − 5 5 1 2 = 2 − 1 1 y 3 = x 3 − ( y 1  x 3 ) ( y 1  y 1 ) y 1 − ( y 2  x 3 ) ( y 2  y 2 ) y 2 = 4 3 − 5 − 10 5 1 2 − 6 2 − 1 1 = 2 − 1 − 5 b)(15 points) On R 2 [ t ] with the inner product ( f  g ) = integraltext 2 f ( t ) g ( t ) dt , trans form { 1 , t, t 2 } to an orthogonal basis. y 1 = x 1 = 1 y 2 = x 2 − integraltext 2 t dt integraltext 2 1 dt y 1 = t − 1 y 3 = x 3 − integraltext 2 t 2 dt integraltext 2 1 dt y 1 − integraltext 2 t 2 ( t − 1) dt integraltext 2 ( t − 1) 2 dt y 2 = t 2 − 4 3 − 2( t − 1) = t 2...
View
Full
Document
This note was uploaded on 04/10/2011 for the course M 346 taught by Professor Radin during the Spring '08 term at University of Texas at Austin.
 Spring '08
 RAdin
 Linear Algebra, Algebra

Click to edit the document details