10 - of tiles in either color. 7 a) Find a recurrence...

Info iconThis preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2
Background image of page 2
3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4
Background image of page 4
5 Find a recurrence relation and give initial conditions for the number of bit strings of length n a) that do not have two consecutive 0’s. b) three consecutive 0’s.
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6 Find a recurrence relation and give initial conditions for the number of ways to lay out a walkway consisting of n tiles of red (R), green (G), or blue (B) color so that no red tiles are adjacent. We assume that tiles of the same color are identical and we have an infinite supply
Background image of page 6
Background image of page 7
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: of tiles in either color. 7 a) Find a recurrence relation and give initial conditions for the number of ternary strings of length n that do not contain consecutive symbols that are the same. b) Find a recurrence relation and give initial conditions for the number of ways to climb n stairs if the person climbing the stairs can take one stair or two stairs at a time....
View Full Document

This note was uploaded on 04/11/2011 for the course MACM 201 taught by Professor Marnimishna during the Spring '09 term at Simon Fraser.

Page1 / 7

10 - of tiles in either color. 7 a) Find a recurrence...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online