{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Gilbert_Hmwk16

# Gilbert_Hmwk16 - moseley(cmm3869 HW16 Gilbert(56380 This...

This preview shows pages 1–3. Sign up to view the full content.

moseley (cmm3869) – HW16 – Gilbert – (56380) 1 This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points By changing to polar coordinates evaluate the integral I = integraldisplay integraldisplay R radicalbig x 2 + y 2 dxdy when R is the region braceleftBig ( x, y ) : 9 x 2 + y 2 25 , y 0 bracerightBig in the xy -plane. 1. I = 86 3 π 2. I = 95 3 π 3. I = 92 3 π 4. I = 89 3 π 5. I = 98 3 π 002 10.0 points By changing to polar coordinates evaluate the integral I = integraldisplay integraldisplay R 4 e - x 2 - y 2 dxdy when R is the region in the xy -plane bounded by the graph of x = radicalbig 4 - y 2 and the y -axis. 1. I = 2 π (1 - e - 4 ) 2. I = 4 π (1 - e - 4 ) 3. I = 2 π (1 - e - 2 ) 4. I = π (1 - e - 4 ) 5. I = π (1 - e - 2 ) 6. I = 4 π (1 - e - 2 ) 003 10.0 points The solid shown in lies inside the sphere x 2 + y 2 + z 2 = 9 and outside the cylinder x 2 + y 2 = 4 . Find the volume of the part of this solid lying above the xy -plane. 1. volume = 5 5 2. volume = 5 5 3 π 3. volume = 5 5 3 4. volume = 5 5 π 5. volume = 10 5 3 6. volume = 10 5 3 π 004 10.0 points

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
moseley (cmm3869) – HW16 – Gilbert – (56380) 2 The plane z = 3 and the paraboloid z = 8 - 5 x 2 - 5 y 2 enclose a solid as shown in z y x Use polar coordinates to determine the vol- ume of this solid.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 6

Gilbert_Hmwk16 - moseley(cmm3869 HW16 Gilbert(56380 This...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online