This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Integral Test John E. Gilbert, Heather Van Ligten, and Benni Goetz Some special infinite series like geometric series will play an important role, just as exponential and log functions did earlier in calculus. One such series is the Harmonic Series ∞ summationdisplay n = 1 1 n = 1 + 1 2 + 1 3 + 1 4 + . . . + 1 n + . . . . As the name suggests, it arises in the study of musical sounds. Does it converge or diverge? Well, 1 3 + 1 4 > 2 × parenleftBig 1 4 parenrightBig = 1 2 , 1 5 + 1 6 + 1 7 + 1 8 > 4 × parenleftBig 1 8 parenrightBig = 1 2 , . . . and so on; thus ∞ summationdisplay n = 1 1 n > 1 + 1 2 + parenleftBig 1 3 + 1 4 parenrightBig + parenleftBig 1 5 + 1 6 + 1 7 + 1 8 parenrightBig + . . . > 1 + 1 2 + 1 2 + 1 2 + . . . = ∞ since on the right we are now adding 1 2 infinitely many times. Thus the Harmonic Series diverges to ∞ ! But improper integrals can be made into a very useful test for infinite series such as the harmonic series. Let f ( x ) be a positive, decreasing function on [1 , ∞ ) . The graph of the sequence { f ( n ) } then appears as black dots at points ( n, f ( n )) on the graph of y = f ( x ) . To associate an area to the series ∑ n f ( n ) we draw green rectangles with base length 1 on the xaxis and one corner at these black dots as shown in extending either to the right or left; a rectangle with corner at ( n, f ( n )) will then have area f ( n ) . In the case of the harmonic series we’d take f ( x ) = 1 x ....
View
Full Document
 Spring '07
 Sadler
 Calculus, Geometric Series, Harmonic Series, Multivariable Calculus, Mathematical Series, lim, Mathematical analysis

Click to edit the document details