This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 1201BPS MATHS 1A
Problem sheet 1 for week 2 STUDENT NAME NUMBER  Question1  Vector addition a) ABCD is thé'quadrilateral below, with G and H being the mid—points of DA and
BC respectively. Show algebraically that & + QWQ “r 2% £4 'éﬁ+ﬂ5%6#z4#
QD_%DC%C#*:Q# 5 Qé¥;réﬁ¢ﬂ&M%WH20¢ac+c# w& EH:~CH ” £Q¥tmﬁéb%ﬂgwﬁﬁ%ab%DC+C# 5'3 m ﬂﬁ+bc_ aa 1201 BPS MATHS 1A Problem sheet 1 for week 2
STUDENT NAME NUMBER Question 2  Vectors in component form
Ifz] m Sin2}; .22 2 31+ 3j; 23 $41 w 1j a) ZI 4" 22 +23 =
b) 2,} —Z2—Z3=
C) 2251”‘!F322t
(1) 21—523: & a}?
12013533 MATHS 1A Problem sheet 1 for week 2
STUDENT NAME NUMBER Question 4 _
a) If_O_E_ I i — 3j, QQ : —21'+ 53', Q: 51' 4“ 2]", ﬁnd m, E 2111ng and deduce
the lengths of all the sides of the triangle PQR.
Draw the triangle below '5 OQ%QK:aqﬁ a! @ﬁitoﬁmog W T: @913) w (92;; {Ag‘1) : ?dw—3j 63/9»H9£ :: Qﬂ m” PR. ﬂag”???
3C55+RJ)»({»35)
“I: 4!: =+ 53 WA“ {34 ‘19 r: $3??? .2 ﬁg WW 4 {iii Vimgr : w WW a; £8 2 J "3,31“:ng j: 4W ...
View
Full Document
 Three '11
 MariaAneiros
 Math

Click to edit the document details