Matrix Partitioning

Matrix Partitioning - If we take a general form matrix...

This preview shows page 1. Sign up to view the full content.

If we take a general form matrix equation = p m m p p n n p n m m n B B B B x x x x A A A A , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 " # % # " " # % # " " # % # " which is the same as we can break it up like this = + + + + + p m m p p n n p q q n m q m n q p q q p q m m q B B B B x x x x A A A A x x x x A A A A , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 " # % # " " # % # " " # % # " " # % # " " # % # " and/or like this & = p r r p p n n p n r r n B B B B x x x x A A A A , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 " # % # " " # % # " " # % # " & = + + + + p m m p r r p n n p n m m n r r B B B B x x x x A A A A , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 , 1 , , 1 1 , 1 " # % # " " # % # " " # % # " and/or like this & = s m m s s n s n m m n B B B B x x x x A A A A , 1 , , 1 1 , 1 , 1 1 , , 1 1 , 1 , 1 , , 1 1 , 1 " # % # " " # % # " " # % # " & = + + + + p m s m p s p s n p s n m m n B B B B x x x x A A A A , 1 , , 1 1 , 1 , 1 1
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/14/2011 for the course ASE 321K taught by Professor Dr.markmear during the Spring '06 term at University of Texas.

Ask a homework question - tutors are online