2004 Exam 2 Spring

# 2004 Exam 2 Spring - Page2 of7 Probleml.A (2 pnts) If ABe...

This preview shows pages 1–3. Sign up to view the full content.

Page2 of7 Probleml.A (2 pnts) If ABe =D andmatrix A is3x4andmatrix then the size of matrix B is 4 x and the size of matrix D is " x C is 5x6, [cxq)\:s) (s' c") -- D "'-'4*5 , --\ 3{Q-5 r(' r(o 5 lrrr)10)r(sps) . o "{/ (.,(q)n'o BrCa , D Problem 1.B (2 pnts) For the matrix A the cofactor of the element in the QrE.lt I \o o\ ott.-{ 2nd row,3nd column. ( z, g ) crr{ac\o' -- 32 Z -al 3L U - (-aa) * e rr) 2< -q ( -q(q -\Q l2 Problem l.C (5 pnts) rf a2x2matrix o = f lt i''l n* the two eigenvalue/eigenvector pairs Lar a4 J r_r-r rll , 2n =2 vo =l tl )1 =-l io r LU LoJ s+.a^.1 detennine the numerical va,lues of 4t , d.2.,d3 ,d4 ( .ie*q'r't- 16 + 1, . a,,+(A) a.+(*) . .,o* *.o. \) [ ', : .:-*_^F\,*----- \\+_L ( \ ct.d{ - ctzAz ) * => A- t U T-\ \.-'-.------1 I I ,-tO \ A,'\{ -t '''\i' I \-+-o / \" -\ ) +' ,- i \ A Z+o o f b '\ a--=O /\, -.\ 6 -l z+t I V o+a z +o l*a A (-' \t 4. 'r ' 'it 2. l\ ar\;L i \. /\ k": ) o \/ '\1. vQr.' '> rl et -\ TO t Gr"o) d"* ( )

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Problem2.A (3 pnts) Us_e Gersl.rgorin's Theorem with matrix A A and AT to find PageS of7 in'in\$ \$gth e1*tn""::-:15,,* C6\uffvl i r -r, \l-.1 I lx-a\ a '----r+--?*-l t ozq r -\ tlt-r - I I z o4lgq ) . [o 21 _ ro,\\ A=l ;l A'= \ \ L-l 2) L z rour \1-ol g z -zL7Lz- -*j* , \')-zA Ll '\ L>L z i t3 -z L7 Ez / / -r 1gq I ra After the 2 iterations, your approximation- J of the eigenvr
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 04/15/2011 for the course ECE 2331 taught by Professor Barr during the Spring '08 term at University of Houston.

### Page1 / 6

2004 Exam 2 Spring - Page2 of7 Probleml.A (2 pnts) If ABe...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online