2004 Exam 2 Spring

2004 Exam 2 Spring - Page2 of7 Probleml.A (2 pnts) If ABe...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Page2 of7 Probleml.A (2 pnts) If ABe =D andmatrix A is3x4andmatrix then the size of matrix B is 4 x and the size of matrix D is " x C is 5x6, [cxq)\:s) (s' c") -- D "'-'4*5 , --\ 3{Q-5 r(' r(o 5 lrrr)10)r(sps) . o "{/ (.,(q)n'o BrCa , D Problem 1.B (2 pnts) For the matrix A the cofactor of the element in the QrE.lt I \o o\ ott.-{ 2nd row,3nd column. ( z, g ) crr{ac\o' -- 32 Z -al 3L U - (-aa) * e rr) 2< -q ( -q(q -\Q l2 Problem l.C (5 pnts) rf a2x2matrix o = f lt i''l n* the two eigenvalue/eigenvector pairs Lar a4 J r_r-r rll , 2n =2 vo =l tl )1 =-l io r LU LoJ s+.a^.1 detennine the numerical va,lues of 4t , d.2.,d3 ,d4 ( .ie*q'r't- 16 + 1, . a,,+(A) a.+(*) . .,o* *.o. \) [ ', : .:-*_^F\,*----- \\+_L ( \ ct.d{ - ctzAz ) * => A- t U T-\ \.-'-.------1 I I ,-tO \ A,'\{ -t '''\i' I \-+-o / \" -\ ) +' ,- i \ A Z+o o f b '\ a--=O /\, -.\ 6 -l z+t I V o+a z +o l*a A (-' \t 4. 'r ' 'it 2. l\ ar\;L i \. /\ k": ) o \/ '\1. vQr.' '> rl et -\ TO t Gr"o) d"* ( )
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Problem2.A (3 pnts) Us_e Gersl.rgorin's Theorem with matrix A A and AT to find PageS of7 in'in$ $gth e1*tn""::-:15,,* C6\uffvl i r -r, \l-.1 I lx-a\ a '----r+--?*-l t ozq r -\ tlt-r - I I z o4lgq ) . [o 21 _ ro,\\ A=l ;l A'= \ \ L-l 2) L z rour \1-ol g z -zL7Lz- -*j* , \')-zA Ll '\ L>L z i t3 -z L7 Ez / / -r 1gq I ra After the 2 iterations, your approximation- J of the eigenvr
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/15/2011 for the course ECE 2331 taught by Professor Barr during the Spring '08 term at University of Houston.

Page1 / 6

2004 Exam 2 Spring - Page2 of7 Probleml.A (2 pnts) If ABe...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online