CalcAnswers5 - nav277 Homework 5 Odell (58340) 1 This...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: nav277 Homework 5 Odell (58340) 1 This print-out should have 18 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0 points Determine the integral I = integraldisplay 1 1 + 25( x- 1) 2 dx . 1. I = 1 5 tan 1 5( x- 1) + C correct 2. I = 1 5 sin 1 5( x- 1) + C 3. I = sin 1 5( x- 1) + C 4. I = tan 1 5( x- 1) + C 5. I = 5 sin 1 parenleftBig x- 1 5 parenrightBig + C 6. I = 5 tan 1 parenleftBig x- 1 5 parenrightBig + C Explanation: Since d dx tan 1 x = 1 1 + x 2 , the substitution u = 5( x- 1) is suggested. For then du = 5 dx , in which case I = 1 5 integraldisplay 1 1 + u 2 du = 1 5 tan 1 u + C , with C an arbitrary constant. Consequently, I = 1 5 tan 1 5( x- 1) + C . keywords: 002 10.0 points Determine the integral I = integraldisplay 2 6 4 + x 2 dx . 1. I = 3 4 correct 2. I = 5 8 3. I = 1 4 4. I = 3 8 5. I = 1 2 Explanation: Since d dx tan 1 x = 1 1 + x 2 , the substitution x = 2 u is suggested. For then dx = 2 du , while x = 0 = u = 0 , x = 2 = u = 1 . Thus I = 3 integraldisplay 1 1 1 + u 2 du . Consequently. I = bracketleftBig 3 tan 1 u bracketrightBig 1 = 3 4 . keywords: 003 10.0 points Determine the integral I = integraldisplay 1 7 4- x 2 dx . 1. I = 7 3 nav277 Homework 5 Odell (58340) 2 2. I = 7 3 3. I = 7 6 4. I = 7 4 5. I = 7 4 6. I = 7 6 correct Explanation: Since integraldisplay 1 1- x 2 dx = sin 1 x + C , we need to reduce I to an integal of this form by changing the x variable. Indeed, set x = 2 u . Then dx = 2 du while x = 0 = u = 0 and x = 1 = u = 1 2 . In this case I = 14 integraldisplay 1 / 2 1 2 1- u 2 du = 7 integraldisplay 1 / 2 1 1- u 2 du . Consequently, I = bracketleftBig 7 sin 1 u bracketrightBig 1 / 2 = 7 6 . keywords: 004 10.0 points Determine the integral I = integraldisplay (1- x 2 ) 1 / 2 4 + 3 arcsin x dx . 1. I =- 1 3 ln | 4 + 3 arcsin x | + C 2. I = 1 6 (4 + 3 arcsin x ) 2 + C 3. I =- 1 6 ln | 4 + 3 arcsin x | + C 4. I = 1 6 ln | 4 + 3 arcsin x | + C 5. I =- 1 3 (4 + 3 arcsin x ) 2 + C 6. I = 1 3 ln | 4 + 3 arcsin x | + C correct Explanation: Set u = 4 + 3 arcsin x . Then du = 3 1- x 2 dx = 3(1- x 2 ) 1 / 2 dx, so I = 1 3 integraldisplay 1 u du = 1 3 ln | u | + C with C an arbitrary constant. Consequently, I = 1 3 ln | 4 + 3 arcsin x | + C . keywords: 005 10.0 points Determine the integral I = integraldisplay / 2 4 cos 1 + sin 2 d ....
View Full Document

Page1 / 9

CalcAnswers5 - nav277 Homework 5 Odell (58340) 1 This...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online