# CalcAnswers6 - nav277 – Homework 6 – Odell –(58340 1...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: nav277 – Homework 6 – Odell – (58340) 1 This print-out should have 17 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay 4 1 ln t 3 √ t dt . 1. I = 4 3 (ln4 + 1) 2. I = 8 3 (ln2 + 1) 3. I = 1 3 (ln2 + 1) 4. I = 1 3 (ln4- 1) 5. I = 4 3 (ln4- 1) correct 6. I = 8 3 (ln2- 1) Explanation: After integration by parts, I = 2 3 bracketleftBig √ t ln t bracketrightBig 4 1- 2 3 integraldisplay 4 1 √ t parenleftBig 1 t parenrightBig dt = 4 3 ln 4- 2 3 integraldisplay 4 1 1 √ t dt . But integraldisplay 4 1 1 √ t dt = 2 bracketleftBig √ t bracketrightBig 4 1 . Consequently, I = 4 3 ln4- 4 3 = 4 3 (ln 4- 1) . keywords: integration by parts, logarithmic functions 002 10.0 points Determine the integral I = integraldisplay 2 x (ln x ) 2 dx . 1. I = x 2 parenleftBig (ln x ) 2- ln x- 1 2 parenrightBig + C 2. I = 2 x 2 parenleftBig (ln x ) 2 + ln x + 1 2 parenrightBig + C 3. I = 2 x 2 parenleftBig (ln x ) 2- ln x + 1 2 parenrightBig + C 4. I = 2 x 2 parenleftBig (ln x ) 2 + ln x- 1 2 parenrightBig + C 5. I = x 2 parenleftBig (ln x ) 2 + ln x + 1 2 parenrightBig + C 6. I = x 2 parenleftBig (ln x ) 2- ln x + 1 2 parenrightBig + C correct Explanation: After integration by parts, integraldisplay x (ln x ) 2 dx = 1 2 x 2 (ln x ) 2- integraldisplay x 2 1 x ln x dx = 1 2 x 2 (ln x ) 2- integraldisplay x ln x dx. But after integration by parts once again, integraldisplay x ln x dx = 1 2 x 2 ln x- 1 2 integraldisplay x 2 1 x dx = 1 2 x 2 ln x- 1 2 integraldisplay x dx = 1 2 x 2 ln x- 1 4 x 2 + C. Thus integraldisplay x (ln x ) 2 dx = 1 2 x 2 (ln x ) 2- 1 2 x 2 ln x + 1 4 x 2 + C. Consequently, I = x 2 parenleftBig (ln x ) 2- ln x + 1 2 parenrightBig + C . nav277 – Homework 6 – Odell – (58340) 2 keywords: integration by parts, log function 003 10.0 points Determine the integral I = integraldisplay ( x 2 + 4) cos2 x dx . 1. I = 1 2 parenleftBig 2 x cos2 x- (2 x 2 +7) sin2 x parenrightBig + C 2. I = 1 4 parenleftBig 2 x sin2 x- (2 x 2 +7) cos2 x parenrightBig + C 3. I = 1 2 parenleftBig 2 x cos2 x +(2 x 2 +7) sin2 x parenrightBig + C 4. I =- x 2 cos 2 x + x sin 2 x- 9 2 cos 2 x + C 5. I = 1 2 x 2 sin 2 x- x cos2 x + 9 2 sin 2 x + C 6. I = 1 4 parenleftBig 2 x cos 2 x +(2 x 2 +7) sin 2 x parenrightBig + C correct Explanation: After integration by parts, integraldisplay ( x 2 + 4) cos2 x dx = 1 2 ( x 2 + 4) sin2 x- 1 2 integraldisplay sin 2 x braceleftBig d dx ( x 2 + 4) bracerightBig dx = 1 2 ( x 2 + 4) sin2 x- integraldisplay x sin 2 x dx . To evaluate this last integral we need to inte- grate by parts once again. For then integraldisplay x sin 2 x dx =- x cos 2 x 2 + integraldisplay cos 2 x 2 dx =- 1 2 x cos2 x + 1 4 sin 2 x ....
View Full Document

{[ snackBarMessage ]}

### Page1 / 9

CalcAnswers6 - nav277 – Homework 6 – Odell –(58340 1...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online