CalcReview2 - Version 010 Review 2 Odell (58340) 1 This...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Version 010 Review 2 Odell (58340) 1 This print-out should have 16 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. 001 10.0 points Evaluate the integral I = integraldisplay 3 1 3 15 + 2 x- x 2 dx . 1. I = 3 4 2. I = 1 2 3 3. I = 4. I = 3 5. I = 1 2 correct 6. I = 3 4 3 Explanation: By completing the square we see that 15 + 2 x- x 2 = 16- ( x- 1) 2 , so I = integraldisplay 3 1 3 radicalbig 16- ( x- 1) 2 , dx . Now set x- 1 = 4 sin u . Then dx = 4 cos u du , while x = 1 = u = 0 , x = 3 = u = 6 . Thus I = 3 integraldisplay / 6 4 cos u 4 cos u du = bracketleftBig 3 u bracketrightBig / 6 . Consequently, I = 1 2 . 002 10.0 points Evaluate the definite integral I = integraldisplay 3 sin 1 x 3 dx . 1. I = 3 4 ( - 2 ln2) 2. I = 3 3. I = 3 2 ( - 2) correct 4. I =- 3 2 5. I = 3 2 ( - 1) 6. I = 3 4 ( + 2 ln2) Explanation: Let x = 3 u ; then dx = 3 du while x = 0 = u = 0 , x = 3 = u = 1 . In this case, I = 3 integraldisplay 1 sin 1 u du , so after integration by parts, I = 3 bracketleftBig u sin 1 u bracketrightBig 1- 3 integraldisplay 1 u 1- u 2 du = 3 bracketleftBig u sin 1 u + ( 1- u 2 ) 1 / 2 bracketrightBig 1 . Consequently, I = 3 parenleftBig 2- 1 parenrightBig = 3 2 ( - 2) . 003 10.0 points Version 010 Review 2 Odell (58340) 2 Reverse the order of integration in the inte- gral I = integraldisplay 3 1 parenleftBig integraldisplay 1 x 2 / 3 f ( x, y ) dy parenrightBig dx, but make no attempt to evaluate either inte- gral. 1. I = integraldisplay 1 1 3 parenleftBig integraldisplay 1 3 y f ( x, y ) dx parenrightBig dy 2. I = integraldisplay 1 1 3 parenleftBig integraldisplay 3 y 1 f ( x, y ) dx parenrightBig dy correct 3. I = integraldisplay 1 y 2 / 3 parenleftBig integraldisplay 3 1 f ( x, y ) dx parenrightBig dy 4. I = integraldisplay 3 1 parenleftBig integraldisplay y 3 f ( x, y ) dx parenrightBig dy 5. I = integraldisplay 1 1 3 parenleftBig integraldisplay 3 y f ( x, y ) dx parenrightBig dy Explanation: The region of integration is similar to the shaded region in the figure y x (not drawn to scale). This shaded region is enclosed by the graphs of 3 y = x 2 , y = 1 , x = 1 . In the given order of integration, first x is fixed and then y varies along the solid line from y = x 2 / 3 to y = 1. To change the order of integration, first fix y . Then, x varies along the dashed line from x = 1 to x = radicalbig 3 y . To cover the region of integration, therefore, y must now vary from 1 3 to 1. Hence, after changing the order of integration, I = integraldisplay 1 1 3 parenleftBig integraldisplay 3 y 1 f ( x, y ) dx parenrightBig dy ....
View Full Document

Page1 / 9

CalcReview2 - Version 010 Review 2 Odell (58340) 1 This...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online