Lec_03

# Lec_03 - Lecture 3 System Representation Transfer Functions...

This preview shows pages 1–5. Sign up to view the full content.

1 Lecture 3: System Representation Transfer Functions Graphical Representation State Space Representation Reading: Chap. 2.7-2.10 Linear Difference Equation Representation e ( k ) y ( k ) Input e ( k ), and output y ( k ), k =0,1,2,…. LTI system given by a linear difference equation Typically assume zero initial conditions: ¡ a n ¡ 1 y ( k ¡ 1) ¡¢¢¢¡ a 0 y ( k ¡ n ) y ( k ) = b n e ( k ) + b n ¡ 1 e ( k ¡ 1) + ¢¢¢ + b 0 e ( k ¡ n ) y ( ¡ 1) = y ( ¡ 2) = = y ( ¡ n ) = 0 and e ( ¡ 1) = e ( ¡ 2) = = e ( ¡ n ) = 0

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Transfer Function Take the z -transform of the linear difference equation to obtain where is called the transfer function of the discrete-time LTI system Question: given a transfer function , what is the corresponding linear difference equation representation? Y ( z ) = b n E ( z ) + b n ¡ 1 z ¡ 1 E ( z ) + ¢¢¢ + b 0 z ¡ n E ( z ) ¡ a n ¡ 1 z ¡ 1 Y ( z ) ¡¢¢¢¡ a 0 z ¡ n Y ( z ) ) Y ( z ) = b n + b n ¡ 1 z ¡ 1 + ¢¢¢ + b 0 z ¡ n 1+ a n ¡ 1 z ¡ 1 + ¢¢¢ + a 0 z ¡ n E ( z ) = G ( z ) E ( z ) G ( z ) = b n + b n ¡ 1 z ¡ 1 + ¢¢¢ + b 0 z ¡ n 1+ a n ¡ 1 z ¡ 1 + ¢¢¢ + a 0 z ¡ n E ( z ) Y ( z ) G ( z ) G ( z ) = z ¡ 1 ( z ¡ 2) 2 Consider a simple LTI discrete-time system whose output y ( k ) is obtained from the input e ( k ) by a delay of one time step: If the input e ( k ) is obtained by sampling a continuous-time: e ( k )= e ( kT ), then the above operation is a time delay element by time T : The transfer function of the time-delay element is Easily implemented by hardware Time-Delay Element E ( z ) Y ( z ) = z ¡ 1 E ( z ) z ¡ 1 y ( k ) = e ( k ¡ 1) e ( k ) y ( kT ) = e (( k ¡ 1) T ) e ( kT ) T T
3 Connection of Time Delay Elements y ( k ) e ( k ) T y ( k ) e ( k ) T T ¡ + + T T T (shift register using D flip-flops) A more complicated connection : Simulation Diagram Simulation diagram is a graphical representation of systems consisting of basic elements of operations: Time-delay elements Summation Multiplication by constant Example: can be represented by a simulation diagram: y ( k ) = 2 e ( k ) ¡ e ( k ¡ 1) ¡ y ( k ¡ 1) T T e ( k ) e ( k ¡ 1) ¡ ¡ + y ( k ) y ( k ¡ 1) 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 Example y ( k ) ¡ 4 y ( k ¡ 1) +3 y ( k ¡ 2) = e ( k ¡ 1) ¡ 2 e ( k ¡ 2) Simulation diagram: Simulation Diagram for General
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 16

Lec_03 - Lecture 3 System Representation Transfer Functions...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online