{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

PremixedFlamesEPSolnLect17ME525Sp2011

# PremixedFlamesEPSolnLect17ME525Sp2011 - 1 Example Problem...

This preview shows pages 1–3. Sign up to view the full content.

1 Example Problem Premixed Flame Structure Lecture 17 ME 525 SP2011 Prof. Lucht The table below lists flame properties calculated using the CHEMKIN PREMIX code for a burner-stabilized H 2 -air flame with an equivalence ratio of 1.0. The flame temperature (K) and the mole fractions of H 2 , O 2 , H 2 O, and N 2 are listed as a function of distance z (in cm) from the burner surface. The mole fractions of all other species in the flame gases total less than 1% and can be neglected in calculating MW mix . Assume that the multi-component diffusion coefficient D i,mix for a species i in the mixture is approximately equal to the binary diffusion coefficient for species i and N 2 , D i,N2 . The pressure of 1 atm is uniform throughout the flowfield. z (cm) T (K) V (cm/s) Density (g/cm 3 ) H 2 Mole Frac O 2 Mole Frac H 2 O Mole Frac N 2 Mole Frac 0.0000 373.70 50.910 0.00078570 0.12850 0.12600 0.10770 0.63540 0.0003 403.30 54.910 0.00072850 0.12620 0.12410 0.11170 0.63550 0.0006 431.30 58.700 0.00068140 0.12400 0.12240 0.11540 0.63560 0.0009 458.10 62.320 0.00064180 0.12190 0.12060 0.11910 0.63580 0.0012 483.90 65.800 0.00060790 0.11980 0.11900 0.12260 0.63590 0.0018 532.70 72.390 0.00055260 0.11590 0.11570 0.12950 0.63610 0.0023 578.30 78.540 0.00050930 0.11210 0.11250 0.13600 0.63640 0.0035 661.50 89.760 0.00044560 0.10490 0.10650 0.14840 0.63690 0.0047 735.70 99.750 0.00040100 0.098290 0.10080 0.15990 0.63730 0.0059 802.40 108.70 0.00036790 0.092070 0.095270 0.17060 0.63780 0.0070 862.60 116.80 0.00034240 0.086220 0.089990 0.18080 0.63820 0.0094 967.20 130.90 0.00030550 0.075430 0.079950 0.19940 0.63900 0.0117 1055.0 142.80 0.00028010 0.065740 0.070590 0.21620 0.63970 0.0141 1130.0 152.80 0.00026170 0.057100 0.061980 0.23110 0.64040 0.0164 1193.0 161.40 0.00024780 0.049540 0.054250 0.24430 0.64090 0.0187 1247.0 168.70 0.00023710 0.043060 0.047480 0.25560 0.64150 0.0234 1331.0 180.10 0.00022200 0.033170 0.036860 0.27310 0.64250 0.0281 1395.0 188.70 0.00021200 0.026680 0.029570 0.28500 0.64330 0.0328 1443.0 195.20 0.00020490 0.022570 0.024750 0.29290 0.64400 0.0375 1482.0 200.30 0.00019970 0.019960 0.021570 0.29820 0.64460 0.0469 1537.0 207.60 0.00019270 0.017300 0.018230 0.30430 0.64570 0.0562 1577.0 212.80 0.00018800 0.015790 0.016340 0.30820 0.64650 0.0750 1629.0 219.40 0.00018230 0.013930 0.014300 0.31300 0.64770

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 The chemical destruction reactions for the hydrogen molecule are given by 3 2 3 22 1 2 3.87 04 , 2.70 , 26.2 2.16 08 , 1.51, 14.4 A A cm kJ k OH O HH A e b E gmol s gmol cm kJ k OH H H O H A e b E gmol s gmol   where the rates of the listed chemical reactions are given by kA T E R T b Au exp / b g . The calculated chemical destruction rate of H 2 ( 2 H ) in units of gmol/cm 3 -sec is plotted as a function of spatial position in the flame below: Calculate the average chemical destruction rate 2 H for H 2 in the region between 1 0.0187 zc m and 2 0.0375 m . Compare with the results of the two-reaction calculation shown in the plot above. 0
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 9

PremixedFlamesEPSolnLect17ME525Sp2011 - 1 Example Problem...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online