Lectures15 - .9 E‘ECA‘WC‘ FxQXA 09 0 KW we have 00...

Info icon This preview shows pages 1–17. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
Image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 12
Image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 14
Image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 16
Image of page 17
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: . .9 E‘ECA‘WC‘. FxQXA 09 0 KW *. we, have 00 . ,_ q (‘an o9 dficxrogL O’Q— mdxus \Q 1+ is chaévmuA WQ UnKCovm \iMquQdan3c+%,€Q Figure 4-6: Ring of charge with line density ,0]. (a) The field dEl due to infinitesimal segment 1 and (b) the fields dE; and dE; due to segments at diametrically opposite locations (Example 4-3.2). (b) Figure 4-6: Ring of charge with line density p]. (a) The field d E 1 due to infinitesimal segment 1 and (b) the fields (El and (IE; due to segments at diametrically opposite locations (Example 4-3.2). M e\9.C3rV\C_ Q\Q.\C'\ 0} (0,0, \m\ Chm. Jfo Smimhl' l is o ' _, t A— Q M at (.eww MP (3 2" 3 5"” 5:; R31 Lima, 261+ h1> [1 &E\ lfla% -\-wo mponmiv‘s‘i GlELr edema — At“ 605th X43 Pia \ {\LL QDVA') M Eltcirnt 5;ch dEZ %WVO\1d bx; Saw/“ml; WVMC)“ {5 \Och A§0W\Y\LQ\\% agnosfic M [\Om’ncm oC— $<Lc3vmn+l lb \dmfiiLCfi *1) o\\_E—\ eicap'i Wi’ W FCbm©OMO+ 09 3E2. '$ ophosxhe 'l‘lncrl— 0-9 dEl , lie—0L1 -\-\M__ K: COIflPszfil’S CQOUA 8 . Wz—Compmm’rs ode) E‘Qémc $§Q\C§\ 09-0 C\VCu\OV DQK 09 le‘fifl, ‘Fm m E‘Cm 0+ (exam m cm gem, 0* m \neiglfi‘ . \m <3“ WW— Z’oous Q\:o\)e— q cinder dxsk 0? dance} WWW UHKQGVM dwarose. dxnsmk 85, MO Q—W\U\O\C E‘: 90c“ “Hm. \flCmM. 5M3} \m/ \dlnncx Q ‘3 0Q E P(0,0,h) Figure 4-7: Circular disk of charge with surface charge density ps. The electric field at P(0, 0, h) points along . the z-direction (Example 4-3.2). COG. \anw W Qdcy dw..\~o Q “nos 0‘; chafing. MOU,\e*/s 'K'Ticfi W C361 Q5 0'58? 09 (wank; 530053 eoGrh mam Tend ~ (mew are Each “ha \rnb on GM} (QWV‘XC‘M‘ whc‘m Comjtqfns dxczrogL C53, 2 (9st : Qnresdv 000 dE = \n (2?“ Vassar} ‘1 H“&(v7‘+\n235/L Th: AYOJTOX Q\Q.\d Q3? (0,0/ BB \5 Cbbkvqmgd by \nkcsmfifia 0“: 0““ m \m‘vs Vac ——7 F=Q E: g 3le Sn VAX“ 2 as 06%" 33/1 \dx A 2 2? O\ = &\( . on“ r a: — A H E: ngh 3 dx 2 O *Z<x33/Z «w A —\ E _’_ Zésh X /Z “(80 —‘Z zé . “(LEO Gz+h1> E 2 $- 65 \fl [ l __ L ’280 \fd‘éth‘ h E : 2 85% [L _ \ 2E0 V“ W ‘3 ::€)52 _ L 0'3 220 D W] E hQ\ n Cm\%¥\h\%eo FW- \5 ?Ob\\'\ua or WLQQMK 5— +8 5 Z E \LCEUL Ede} Proslumd % Gougg's Law" .KQQQV AM. ‘Co\\0uomg Cquaér‘xom 19mm MaxwaWs Gauchos @ VIE: C’v Dkwcrmkck firm 6!; Qn%3'$ Law- DIVQCESCOBfi Q\ (1% *0 JAN. 90L} ‘H‘o’x— W QMQC 0320' (L o Panhdm \h00\ U15 C‘XUMoér'Ncfi - 0 1n EM m (balm Q0 haw—+— «Qxxh berm &k§%§gcc<\\v\a\ and \nk<5m\ gscm$ QQ equoénofl$ Azpmdufi Ofl (”\‘fidq Q0690 MQWS +0 \OQ' Move Canvemm‘cfi— +0 cma. ' 0 Ram m mxufim 9mm as; G) +o‘m\ droroxzd endcéd m V Qua“ Qvom quevgmu, W ‘1, . TN dwafckmu, 39 CHM ULaYCX‘ m:- \JO\U\W\5L \f— (1‘5 EQUCA *0 +\’\9_ ‘\"OSVO\\ QALQOVA QMAX GP M UQQAYO‘V ‘\’\\(‘cu 5k q $.qung endos'mas \}-_ Total charge in 1) Gaussian surface S enclosing volume v Figure 4-8: Gauss’s law states that the outward flux of D through a surface is proportional to the enclosed charge Q . m W\ Q \qx +km§n m $UW‘CQQL 3 \% MUOA *0 m CMQVQQ— enclosed, g 1 Qaueskqfl suPQaCL WWMAb ”\‘O “CA-fl 00 g P {Sam M dwwwsims 09 :' Mdmkmm. “CFO/Y) AU’ +0 AV— Qvfi’mmna Ctr < K $oxfi¥ cér Lohdn B 1: eququd Ham q, Can be MM as Q E? Charm). I. .We. can Qmé b éuuflro Q sm<5\9~ iso‘bké eou'n’r ("know memod Gauss's Law- . Gaussian surface Figure 4-9: Electric field D due to point charge 4. Eve}, we, dmw 0 Chad , spudafi Gaussian sw‘chz S QBV an QrfiX-(‘Qw (cams K CLOXLVLA Olfaf Tgram 5y mmxzéfiq Coos‘xcm‘cfiocfi 3 cASSurmrxah 0,] ‘5 Gamma. TD mug? polhBV CCd‘chUé Ou’rmcvd abrg D: Dgé “ ( flux 69¢) ’ Lo conuummx \-0 L52. Wm QM\n3_\\M' 6&ch C fig Email. a draw» d\§fi\bu+©fl 'foV @0535ng SYWWWW fymmfiw mony/ hms q\\cws as Ave mqka. weld assumpfimS _, Qbm+ M mq%(\\\rudg_’ X $uvcénom b?- D as a anfiom <59 \ Gauss’s Law stf‘Cfi‘A $‘l mmlr'fi/ 3 . A sdmmécfi 6W1.“ of; uvfi‘govm CHOW" erArTak o: (‘ch5 Q Gnocfigd QoéndL Jena} \5 m‘rschQ, W 5M\ as lQ O‘\\ Hm. SNHE C.\’\ a? WC. 0% m 5%“ 0 Cf/ Cmcufi‘mkd Q’r ‘HVL (inky q SWCQ\ aka,“ 0% \Qonn Qko +O‘\'CL\ May—(AGE: M\ = q/W (awbflom SuC‘QOLULs g); 32 . =DLHW‘LZ = 3/ 6: flag LhTY‘ZZ 1:; = 357 £0Lt-[TFL " ‘ PFOUQ AWE} Q S\{)\NL,V\C_Q\ 3M\ 0'9 Uh\9YO(‘m Ckorqfi 94(ka no .I QW$¥QSHL "$0ch of\ Q C.\(\QTC\«°_ qu‘ndz. 3“an \s \0 SAN \néxéw. JVN, ska“ é C guongg WL \figc§ a SQquxLoAM/k Symmfi'mc. webmxrflcd C—\f\O(‘c\€_ dL3\'fi \OUHOO a E m?) . D 0 $3 I (3 I'M-1131 = 3 r ~ . Ma '\‘\W\/C5 of. dhoogg 3 akd’) MAT Q‘om Symmdfy @Sf‘ (Eisnmg \D\\ \s Conskfir a W: dwadfim lb flotmcfl .cfi‘ aux, ma* 0-? each Subsw‘pau. OQ ea M Q“ \flc\fi\\'L \WV— QWW v ‘ 5%va comflmxxw Adda. Wn¥ D mub+ m mAmA “643M“- Duero 5 mmdr \ a cwam V aqusif’a fiflafifiq <73 To‘rn\ CW mNmmad wx’rhn 3 {s CL =62}? , h a, Mayra? cwnokar . (Dauffi’ 3 law— (Pbmr $\/V‘(\N\L\YV\’\ .A WOO - Coaué-{naé 6M 6? («\WOK‘CXL : TN 3mm} \s \OQQQQ‘Q' f, gig“? Whom CXd‘ak SérYA'b \f: <§\Cc.c.\—<<§ QWUB COCA/n ‘«}*C5Qus%'6 Law Q\\ows ace 3r0 59mm \mpovsmfi‘ ' . *hqmqm % .1? CAO excess charag. a pbm<§ on cm \sdakc) Conduéco?) +\’O\‘ amwn’r a? Clam?— w\\\ Nova QMM‘QL/ ¥o *NSMVQQLL O? W Conduc’ro? , WC? W QKC1$$ qkaroxa, w)“ be. mec§ Lo\‘\’\fl\(\ ’r\r\o_ \Docfiv 09 flag. CmC§UC\‘d) E‘LCA’HC. Qdd is Zero men c1 CcmdL/Ldrolj SC o‘mw— endow wx’m.‘m condudm‘ rhuSF mural. SQQ, Bond 044*], ‘nms \s on \fl‘kfiw :wcfimd‘MQM' \magurm ‘HmOA‘ \>\{ W‘OUIhs +Q M “344(k) W of flux, Con, 0&5 am Cgflrfinaq GA Car (3on Cram equ GHWQ$ I$C>\Q\rtc§ Candugw M Coausa on $UVQQLL M {\QGQC. Qxdé math. 0 Comc‘lud‘ot‘ = $4 ,, I; 'Hms were. “0+ AWN) m E-Qdd (Dm\c§ «M cows on W Cmdut’fl'm (@293 dmkms Mx— Gm ohm/6 mm’r \n o Cmducsve‘tj and Cuflm‘} weak) @010 m ‘HNL Conduchv(gmqm wodd mm) 9mm Pbm *0 P\q(2_ \n Hm, ComduCXOVB, M 06C, N sud“ QURXUCA CMUUNI'S \fl Q COOdMC‘A’OV} 30 E =Oé AS 0 deuémr 12: \Duon Qhfiw J an ekafima 9&0) cAoas 09$qu 0 wag, m 0am chem? qchpk élfinbtfi'flé AfiG‘C 5* ‘Wv, hkvnq\ E-Qxdck = $ M WWW-XV 0‘; (“W lg ”HAL glukng 9A0) wfihn +M WHCRX‘: CD ’Hun mgw Ammah W (Caugsbm gurgqmd <3 GOUSS $ Low k_\\s «4%. Mn “Rafi ’Ht 0d" dmarch mSidL ‘HAL $UVQQCL ( IQ ‘Hrw. Qonccyz. \‘b m3 msmlo. ‘H'W Gaussian surface) r\' “143+ ha QUEEAOM GK: ‘33 TMan, ‘HVL Q\"Q<‘°§L has. On My, aw‘QacL 0Q 'HWL Cohdud‘or\ AWL Ekclmg RQA 9w. +0 on IDQMA‘C, CMQKQ) Comdugxnnoé Shag}. 5 \AQAMAAY 74:9; ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern