# ch06_ssm - 6 Inductance, Capacitance, and Mutual Inductance...

This preview shows pages 1–4. Sign up to view the full content.

6 Inductance, Capacitance, and Mutual Inductance Assessment Problems AP 6.1 [a] i g =8 e 300 t 8 e 1200 t A v = L di g dt = 9 . 6 e 300 t +38 . 4 e 1200 t V ,t > 0 + v (0 + )= 9 . 6+38 . 4=28 . 8 V [b] v =0 when 38 . 4 e 1200 t =9 . 6 e 300 t or t = (ln 4) / 900=1 . 54 ms [c] p = vi = 384 e 1500 t 76 . 8 e 600 t 307 . 2 e 2400 t W [d] dp dt when e 1800 t 12 . 5 e 900 t +16=0 Let x = e 900 t and solve the quadratic x 2 12 . 5 x x =1 . 45 = ln 1 . 45 900 = 411 . 05 µ s x =11 . 05 = ln 11 . 05 900 =2 . 67 ms p is maximum at t = 411 . 05 µ s [e] p max = 384 e 1 . 5(0 . 41105) 76 . 8 e 0 . 6(0 . 41105) 307 . 2 e 2 . 4(0 . 41105) =32 . 72 W [f] i max [ e 0 . 3(1 . 54) e 1 . 2(1 . 54) ]=3 . 78 A w max =(1 / 2)(4 × 10 3 )(3 . 78) 2 =28 . 6 mJ [g] W is max when i is max, i is max when di/dt is zero. When di/dt , v , therefore t . 54 ms. 6–1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
6–2 CHAPTER 6. Inductance, Capacitance, and Mutual Inductance AP 6.2 [a] i = C dv dt =24 × 10 6 d dt [ e 15 , 000 t sin 30 , 000 t ] =[0 . 72 cos 30 , 000 t 0 . 36 sin 30 , 000 t ] e 15 , 000 t A ,i (0 + )=0 . 72 A [b] i ± π 80 ms ² = 31 . 66 mA ,v ± π 80 ms ² =20 . 505 V , p = vi = 649 . 23 mW [c] w = ± 1 2 ² Cv 2 = 126 . 13 µ J AP 6.3 [a] v = ± 1 C ² Z t 0 idx + v (0 ) = 1 0 . 6 × 10 6 Z t 0 3 cos 50 , 000 xdx = 100 sin 50 , 000 t V [b] p ( t )= = [300 cos 50 , 000 t ] sin 50 , 000 t = 150 sin 100 , 000 t W ,p (max) = 150 W [c] w (max) = ± 1 2 ² 2 max =0 . 30(100) 2 = 3000 µ J =3 mJ AP 6.4 [a] L eq = 60(240) 300 =48 mH [b] i (0 + )=3+ 5= 2 A [c] i = 125 6 Z t 0 + ( 0 . 03 e 5 x ) dx 2=0 . 125 e 5 t 2 . 125 A [d] i 1 = 50 3 Z t 0 + ( 0 . 03 e 5 x ) dx +3=0 . 1 e 5 t +2 . 9 A i 2 = 25 6 Z t 0 + ( 0 . 03 e 5 x ) dx 5=0 . 025 e 5 t 5 . 025 A i 1 + i 2 = i AP 6.5 v 1 . 5 × 10 6 Z t 0 + 240 × 10 6 e 10 x dx 10 = 12 e 10 t V v 2 . 125 × 10 6 Z t 0 + 240 × 10 6 e 10 x dx 3 e 10 t 2 V v 1 ( )=2 V 2 ( 2 V W = ³ 1 2 (2)(4) + 1 2 (8)(4) ´ × 10 6 µ J
Problems 6–3 AP 6.6 [a] Summing the voltages around mesh 1 yields 4 di 1 dt +8 d ( i 2 + i g ) dt + 20( i 1 i 2 )+5( i 1 + i g )=0 or 4 di 1 dt +25 i 1 di 2 dt 20 i 2 = 5 i g di g dt !

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 04/20/2011 for the course EECE 222 taught by Professor Amsddasgf during the Spring '11 term at American University in Bulgaria.

### Page1 / 10

ch06_ssm - 6 Inductance, Capacitance, and Mutual Inductance...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online