{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# ch09_ssm - Sinusoidal Steady State Analysis 9 Assessment...

This preview shows pages 1–5. Sign up to view the full content.

9 Sinusoidal Steady State Analysis Assessment Problems AP 9.1 [a] V = 170/ 40 V [b] 10 sin(1000 t + 20 ) = 10 cos(1000 t 70 ) · . . I = 10/ 70 A [c] I = 5/36 . 87 + 10/ 53 . 13 = 4 + j 3 + 6 j 8 = 10 j 5 = 11 . 18/ 26 . 57 A [d] sin(20 , 000 πt + 30 ) = cos(20 , 000 πt 60 ) Thus, V = 300/45 100/ 60 = 212 . 13 + j 212 . 13 (50 j 86 . 60) = 162 . 13 + j 298 . 73 = 339 . 90/61 . 51 mV AP 9.2 [a] v = 18 . 6 cos( ωt 54 ) V [b] I = 20/45 50/ 30 = 14 . 14 + j 14 . 14 43 . 3 + j 25 = 29 . 16 + j 39 . 14 = 48 . 81/126 . 68 Therefore i = 48 . 81 cos( ωt + 126 . 68 ) mA [c] V = 20 + j 80 30/15 = 20 + j 80 28 . 98 j 7 . 76 = 8 . 98 + j 72 . 24 = 72 . 79/97 . 08 v = 72 . 79 cos( ωt + 97 . 08 ) V 9–1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
9–2 CHAPTER 9. Sinusoidal Steady State Analysis AP 9.3 [a] ωL = (10 4 )(20 × 10 3 ) = 200 Ω [b] Z L = jωL = j 200 Ω [c] V L = I Z L = (10/30 )(200/90 ) × 10 3 = 2/120 V [d] v L = 2 cos(10 , 000 t + 120 ) V AP 9.4 [a] X C = 1 ωC = 1 4000(5 × 10 6 ) = 50 Ω [b] Z C = jX C = j 50 Ω [c] I = V Z C = 30/25 50/ 90 = 0 . 6/115 A [d] i = 0 . 6 cos(4000 t + 115 ) A AP 9.5 I 1 = 100/25 = 90 . 63 + j 42 . 26 I 2 = 100/145 = 81 . 92 + j 57 . 36 I 3 = 100/ 95 = 8 . 72 j 99 . 62 I 4 = ( I 1 + I 2 + I 3 ) = (0 + j 0) A , therefore i 4 = 0 A AP 9.6 [a] I = 125/ 60 | Z | / θ z = 125 | Z | /( 60 θ Z ) But 60 θ Z = 105 · . . θ Z = 45 Z = 90 + j 160 + jX C · . . X C = 70 Ω; X C = 1 ωC = 70 · . . C = 1 (70)(5000) = 2 . 86 µ F [b] I = V s Z = 125/ 60 (90 + j 90) = 0 . 982/ 105 A ; · . . | I | = 0 . 982 A
Problems 9–3 AP 9.7 [a] ω = 2000 rad/s ωL = 10 Ω , 1 ωC = 20 Ω Z xy = 20 j 10 + 5 + j 20 = 20( j 10) (20 + j 10) + 5 j 20 = 4 + j 8 + 5 j 20 = (9 j 12) Ω [b] ωL = 40 Ω , 1 ωC = 5 Ω Z xy = 5 j 5 + 20 j 40 = 5 j 5 + (20)( j 40) 20 + j 40 = 5 j 5 + 16 + j 8 = (21 + j 3) Ω [c] Z xy = 20( jωL ) 20 + jωL + 5 j 10 6 25 ω = 20 ω 2 L 2 400 + ω 2 L 2 + j 400 ωL 400 + ω 2 L 2 + 5 j 10 6 25 ω The impedance will be purely resistive when the j terms cancel, i.e., 400 ωL 400 + ω 2 L 2 = 10 6 25 ω Solving for ω yields ω = 4000 rad/s . [d] Z xy = 20 ω 2 L 2 400 + ω 2 L 2 + 5 = 10 + 5 = 15 Ω AP 9.8 The frequency 4000 rad/s was found to give Z xy = 15 Ω in Assessment Problem 9.7. Thus, V = 150/0 , I s = V Z xy = 150/0 15 = 10/0 A Using current division, I L = 20 20 + j 20 (10) = 5 j 5 = 7 . 07/ 45 A i L = 7 . 07 cos(4000 t 45 ) A , I m = 7 . 07 A

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
9–4 CHAPTER 9. Sinusoidal Steady State Analysis AP 9.9 After replacing the delta made up of the 50 Ω , 40 Ω , and 10 Ω resistors with its equivalent wye, the circuit becomes The circuit is further simplified by combining the parallel branches, (20 + j 40) (5 j 15) = (12 j 16) Ω Therefore I = 136/0 14 + 12 j 16 + 4 = 4/28 . 07 A AP 9.10 V 1 = 240/53 . 13 = 144 + j 192 V V 2 = 96/ 90 = j 96 V jωL = j (4000)(15 × 10 3 ) = j 60 Ω 1 jωC = j 6 × 10 6 (4000)(25) = j 60 Ω Perform source transformations: V 1 j 60 = 144 + j
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 19

ch09_ssm - Sinusoidal Steady State Analysis 9 Assessment...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online