ch09_ssm - Sinusoidal Steady State Analysis 9 Assessment...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
9 Sinusoidal Steady State Analysis Assessment Problems AP 9.1 [a] V = 170/ 40 V [b] 10 sin(1000 t +20 ) = 10 cos(1000 t 70 ) · .. I = 10/ 70 A [c] I =5/36 . 87 + 10/ 53 . 13 =4+ j 3+6 j 8=10 j 5=11 . 18/ 26 . 57 A [d] sin(20 , 000 πt +30 ) = cos(20 , 000 60 ) Thus, V = 300/45 100/ 60 = 212 . 13 + j 212 . 13 (50 j 86 . 60) = 162 . 13 + j 298 . 73 = 339 . 90/61 . 51 mV AP 9.2 [a] v =18 . 6 cos( ωt 54 ) V [b] I = 20/45 50/ 30 =14 . 14 + j 14 . 14 43 . 3+ j 25 = 29 . 16 + j 39 . 14=48 . 81/126 . 68 Therefore i =48 . 81 cos( + 126 . 68 ) mA [c] V =20+ j 80 30/15 j 80 28 . 98 j 7 . 76 = 8 . 98 + j 72 . 24=72 . 79/97 . 08 v =72 . 79 cos( +97 . 08 ) V 9–1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
9–2 CHAPTER 9. Sinusoidal Steady State Analysis AP 9.3 [a] ωL = (10 4 )(20 × 10 3 ) = 200 Ω [b] Z L = jωL = j 200 Ω [c] V L = I Z L = (10/30 )(200/90 ) × 10 3 = 2/120 V [d] v L = 2 cos(10 , 000 t + 120 ) V AP 9.4 [a] X C = 1 ωC = 1 4000(5 × 10 6 ) = 50 Ω [b] Z C = jX C = j 50 Ω [c] I = V Z C = 30/25 50/ 90 =0 . 6/115 A [d] i . 6 cos(4000 t + 115 ) A AP 9.5 I 1 = 100/25 =90 . 63 + j 42 . 26 I 2 = 100/145 = 81 . 92 + j 57 . 36 I 3 = 100/ 95 = 8 . 72 j 99 . 62 I 4 = ( I 1 + I 2 + I 3 )=(0+ j 0) A , therefore i 4 A AP 9.6 [a] I = 125/ 60 | Z | / θ z = 125 | Z | /( 60 θ Z ) But 60 θ Z = 105 · .. θ Z =45 Z =90+ j 160 + C · .. X C = 70 Ω; X C = 1 = 70 · .. C = 1 (70)(5000) =2 . 86 µ F [b] I = V s Z = 125/ 60 (90 + j 90) . 982/ 105 A ; · .. | I | . 982 A
Background image of page 2
Problems 9–3 AP 9.7 [a] ω = 2000 rad/s ωL =10Ω , 1 ωC = 20 Ω Z xy =20 k j 10+5+ j 20 = 20( j 10) (20 + j 10) +5 j 20 =4+ j 8+5 j 20=(9 j 12) Ω [b] =40Ω , 1 = 5Ω Z xy =5 j 5+20 k j 40=5 j 5+ " (20)( j 40) 20 + j 40 # j 5+16+ j 8 = (21 + j 3) Ω [c] Z xy = " 20( jωL ) 20 + # + 5 j 10 6 25 ω ! = 20 ω 2 L 2 400 + ω 2 L 2 + j 400 400 + ω 2 L 2 j 10 6 25 ω The impedance will be purely resistive when the j terms cancel, i.e., 400 400 + ω 2 L 2 = 10 6 25 ω Solving for ω yields ω = 4000 rad/s . [d] Z xy = 20 ω 2 L 2 400 + ω 2 L 2 +5=10+5=15Ω AP 9.8 The frequency 4000 rad/s was found to give Z xy =15Ω in Assessment Problem 9.7. Thus, V = 150/0 , I s = V Z xy = 150/0 15 = 10/0 A Using current division, I L = 20 20 + j 20 (10) = 5 j 5=7 . 07/ 45 A i L =7 . 07 cos(4000 t 45 ) A ,I m . 07 A
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
9–4 CHAPTER 9. Sinusoidal Steady State Analysis AP 9.9 After replacing the delta made up of the 50 Ω , 40 Ω , and 10 Ω resistors with its equivalent wye, the circuit becomes The circuit is further simpliFed by combining the parallel branches, (20 + j 40) k (5 j 15) = (12 j 16) Ω Therefore I = 136/0 14+12 j 16+4 =4/28 . 07 A AP 9.10 V 1 = 240/53 . 13 = 144 + j 192 V V 2 = 96/ 90 = j 96 V jωL = j (4000)(15 × 10 3 )= j 60 Ω 1 jωC = j 6 × 10 6 (4000)(25) = j 60 Ω Perform source transformations: V 1 j 60 = 144 + j 192 j 60 =3 . 2 j 2 . 4 A V 2 20 = j 96 20 = j 4 . 8 A
Background image of page 4
Problems
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 04/20/2011 for the course EECE 222 taught by Professor Amsddasgf during the Spring '11 term at American University in Bulgaria.

Page1 / 19

ch09_ssm - Sinusoidal Steady State Analysis 9 Assessment...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online